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Abstract. This paper proposes a new constitutive model for predicting the impact rates response of polypropylene. Impact

rates, as used here, refer to strain rates greater than 1000 1/s. The model is a physically based, three-dimensional constitutive

model which incorporates the contributions of the amorphous, crystalline, pseudo-amorphous and entanglement networks to

the constitutive response of polypropylene. The model mathematics is based on the well-known Glass-Rubber model originally

developed for glassy polymers but the arguments have herein been extended to semi-crystalline polymers. In order to predict

the impact rates behaviour of polypropylene, the model exploits the well-known framework of multiple processes yielding

of polymers. This work argues that two dominant viscoelastic relaxation processes – the alpha- and beta-processes – can be

associated with the yield responses of polypropylene observed at low-rate-dominant and impact-rates dominant loading regimes.

Compression test data on polypropylene have been used to validate the model. The study has found that the model predicts quite

well the experimentally observed nonlinear rate-dependent impact response of polypropylene.

1 Introduction

The constitutive response of semi crystalline polymers
and in particular polypropylene is complicated by the
multiphase morphology of this class of polymers. Several
researchers have been working on robust holistic models
for semi-crystalline polymers. Hong and co-workers [1]
proposed what they described as a three-component model
for semi-crystalline polymers. The model was developed
strictly for tensile deformation of semi-crystalline poly-
mers and validated against tests carried out on poly-
ethylene. The authors postulated that the cumulative tensile
deformation response of a given semi-crystalline poly-
mer can be divided into three constituent quasi-static
stresses arising from the microstructure of the material.
i.e. (i) a relaxing stress, σr – the stress that arises from
the viscous forces within the sample, due to the separa-
ble interaction of the crystalline and amorphous phases;
(ii) a crystal block stress,σc transmitted through the crystal
blocks of the crystalline phase; and (iii) a network stress,
σn which captures the global amorphous phase network
response of a chosen semi-crystalline polymer. In their
model, the authors assumed an ideal rubbery elasticity
relation with material response characterized by a shear
modulus, G. Again, Arruda and Wang [2] developed a
three-dimensional model which was based on represen-
tative microstructural consistency, three-dimensional large
deformation and strain rate dependence, while accurately
replicating some of the unique experimental observations
of semi-crystalline polymers. The test material used for
model validation was thermoplastic olefin (TPO) with
comparisons built from understandings of polypropylene
deformation response. Sweeney and co-workers [3] pro-
posed a constitutive model for prediction of large de-
formation of polypropylene under multiaxial loading and
processing conditions. The model was developed on as-
sumption of a mechanical analogue consisting of two par-
allel ‘arms’ – one arm consisting of a single Eyring process

in series with an Edwards-Vilgis network while a second
arm was entirely an Edwards-Vilgis network. The model
was validated using biaxial experiments conducted at high
temperature (135◦C). The model predicts the essential
feature of material behaviour such as: large deformations,
strain rate dependence and yielding.

All the above models have been developed to predict
low-rate (quasi-static) response. The constitutive mod-
elling of impact rates response of semicrystalline polymers
remains in its infancy. Some of the most recent attempts
have followed a phenomenological approach [4–6]. The
challenge for impact rates response stem from the coupled
interaction of inertial effects and rate-dependent response.
The former can be determined by adequate explicit or
implicit wave propagation algorithms while the later is
modelled using different nonlinear rate-dependent con-
stitutive models [7]. The later presents a real challenge
when dealing with polymers which are known for their
nonlinear viscoelastic behaviour and show multiple re-
laxation processes across a wide range of strain rates.
Mulliken and Boyce recently observed and modelled this
for a glassy polymer – a monophasic system [8]. However,
for semicrystalline polymers the constitutive response is
complicated by the multiphasic morphology. The research
question that needs to be addressed is the significance of
such morphology in the impact rates response of semicrys-
talline polymers.

An approach towards understanding the dependence on
morphology at impact rates would be phenomenological
i.e. observing experimentally the constitutive response of
a given polymer across a wide range of strain rates. Many
years ago, Chou et al. [9] showed that the dependence
of yield stress on logarithm of strain rate for polypropy-
lene follows a non-linear or bilinear [10] function. This
finding has been confirmed in recent times independently
by Gomez Del Rio et al. [11] and Okereke et al. [12].
Ree and Eyring [13] argued that such nonlinearity can
be attributed to the coupled interaction of two activation

This is an Open Access article distributed under the terms of the Creative Commons Attribution License 2.0, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

Article available at http://www.epj-conferences.org or http://dx.doi.org/10.1051/epjconf/20122604031

http://www.epj-conferences.org
http://dx.doi.org/10.1051/epjconf/20122604031


EPJ Web of Conferences

Fig. 1. A three-arm one-dimensional mechanical analogue of

the two process model showing contributions of two viscoelastic

processes (alpha- and beta-processes) and entanglement network.

processes each dominating at either low-rate (high-
temperature) or impact rates (low-temperature) regimes.
The link between viscoelastic relaxation processes and
flow stress of a polymeric material was made by Bauwens
[14]. Therefore, this paper exploits those arguments in
developing constitutive models for polypropylene capable
of predicting the constitutive behaviour at both low and
impact rates.

2 The constitutive model

2.1 The three-arm mechanical analogue

A probable one-dimensional mechanical analogue for mod-
elling deformation of such semi-crystalline polymers is
shown in Fig 1. It consists of two viscoelastic arms (spring-
dashpot arrangement) for the alpha- and beta-relaxations
as well as a rubbery network spring.

2.2 Model formulation

The stress tensor, σ associated with the deformation is
a cumulative parallel response of the three parts of the
mechanical analogue shown in Fig. 1. The proposed con-
stitutive model consists of a set of simultaneous equations
whose solution gives the Cauchy stress, σ in terms of the
deformation gradient, F and its rate of change, D. For the
purpose of this paper, let us define the volume ratio, J and
mean stress:σm=K ln J where J= det F. In this definition
of mean stress, the hydrostatic response is assumed to
be time independent. To develop the expression for the
deviatoric component of Cauchy stress, S the arguments of
the Glass-Rubber model for amorphous polymers [15–18]
have been adopted here. The authors postulated that the to-
tal stress experienced by a given polymer results from two
key energy components: (i) the bond-stretching deviatoric

stress component, arising from perturbation of inter-atomic
potentials; and (ii) the conformational deviatoric stress

component, arising from entropy-elastic perturbation of
molecular conformations.

In dealing with the semi-crystalline polymers (e.g. PE,
PP, POM) that have an alpha-crystalline relaxation, the
constitutive mathematics of the Glass-Rubber model is
here extended to a biphasic two-process polymer system.

With respect to the three arm rheological model shown
in Fig. 1, the deformation of semicrystalline polymers is a

cumulative parallel response of the amorphous, crystalline
(including a constrained ‘pseudo-amorphous’ zone) as
well as entanglement networks. In extending the arguments
of the Glass-Rubber model for semicrystalline polymers,
we assume the sum of the crystallinity parameter (a mea-
sure equivalent to degree of crystallinity) for both phases
must sum up to 1 i.e. va + vβ = 1. The complete
constitutive formulation for deviatoric Cauchy stress, S is
an additive response of the weighted contributions of the
two processes to the bond-stretching and the conforma-
tional deviatoric Cauchy stresses. Therefore, the total two-
process Cauchy stress becomes:

σ = S + σm where S = vαS
b
α + vβS

b
β + Sc (1)

Sb
α and Sb

β
represent the alpha- and beta-process dominant

deviatoric bond-stretching stress and Sc is the conforma-
tional deviatoric stress. The entangled molecular network
apply for both crystalline and amorphous phases, hence
the Schas not been weighted between the two phases. In
the following sections, the exact formulations for Sband Sc

Cauchy stress components are presented.

2.2.1 Bond stretching deviatoric stress components, Sb

With respect to the bond-stretching deviatoric stress com-
ponent, Sb the total rate of deformation can be additively
decomposed into elastic and viscous parts.

D = D
e
+ D

v
(2)

where D the rate of deformation, has been additively
decomposed into elastic, e and viscous, v parts and an
overbar indicates the isochoric contribution. These two
parts originate from the elastic bond-stretching, D

e
and

viscous flow of molecular segments, D
v
. The rate of defor-

mation can be modelled by linear elasticity and associative
flow rule for the elastic and viscous parts respectively.
Therefore the total deviatoric rate of deformation becomes:

D =
Ŝb

j

2Gb
j

+

Sb
j

µ j

=
1

2Gb
j















Ŝb
j +

Sb
j

φ j















(3)

where relaxation time, φ j = µ j/2Gb
j

is defined in terms

of a generalized stress-dependent viscosity, µ j and bond

stretching contribution to shear modulus, Gb
j
. Also, j refers

to either alpha- or beta-process, and Ŝb
j

is an objective rate

of the bond-stretching deviatoric stress, Sb
j
. The Jaumann

objective stress rate [19] is adopted here. Therefore, for a
given j-process, the objective rate of the deviatoric bond-
stretching Cauchy stress, in the presence of a finite spin, W
is expressed as equation (3), where Ṡ b

j
is the rate of change

of bond-stretching deviatoric component Cauchy stress.

Ŝb
j = Ṡb

j −WSb
j + Sb

jW (4)

For numerical predictions to fit experimental data accu-
rately, each of the alpha- and beta-processes require a
spectrum of relaxations times, φ j reflecting the range of
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molecular packing densities, and hence, activation barriers,
where flow events occur in the polymer. However, it has
been shown by Wu and Buckley [20] that in the region of
yield and post-yield polymer deformation, the full relax-
ation spectrum collapses into a single relaxation time such
that each alpha- or beta-process corresponds to a geometric
mean relaxation time i.e. φα and φβ.

The relaxation time varies with: (a) temperature T ,
(b) structure of the material as expressed through Tool’s
fictive temperature, T f (c) isotropic invariants of stress:
mean stress, σm and octahedral shear stress, τoct [15]. The
mean relaxation time, φ j can be related to its value, φ∗

j,0
in

a stress-free reference configuration. The relaxation time
for j-th process in terms of structure, aS , j temperature, aT, j

and stress, aσ, j shift factors is:

φ j = aT, jaS , jaσ, jφ
∗
j,0 (5)

The stress-free reference value for the relaxation time
spectrum φ∗

j,0
is the linear viscoelastic limit of the geomet-

ric mean relaxation time of the spectrum. In the following,
the formulations for each of the above shift factors are
presented.

Temperature Shift Factor: Temperature effects on the re-
laxation time are introduced by the Arrhenius equation, for
both phases as:

aT, j = exp

[

∆H0, j

R

(

1

T
− 1

T ∗

)]

(6)

where ∆H0, j represents the enthalpic contribution to the ac-
tivation energy barrier associated with the j−phase which
can be either alpha- and beta-segments and T ∗ is a refer-
ence temperature.

Stress Shift Factor: In this paper, it was assumed that
structural relaxation occurs both in the amorphous and
pseudo-amorphous phases. This agrees with observation
of a broadened glass transition zone made by Struik [21].
Structural relaxation is implemented for both the alpha-
and beta-phases through Tool’s fictive temperature. The
structural shift factor, aS , j for the j−phase becomes:

aS , j = exp















C

T f , j − T∞
− C

T ∗
f
− T∞















(7)

where C = Cohen-Turnbull constant, T f , j is fictive temper-
ature for the j−phase, and T ∗

f
is corresponding reference

fictive temperature for a case where the structure is always
in equilibrium, T∞ is Vogel temperature (where relaxation
time, φ j → ∞). The structural relaxation evolves with
plastic strain: an empirical formulation for the dependence
of fictive temperature on time and viscous rate of defor-
mation has been proposed [22]. The same implementation
was used here for the two processes.

Stress Shift Factor: This result from the combined effects
of the mean stress, σm and the bond-stretching octahedral
shear stress, τb

oct, j
of the deforming polymer for each of

the j-segments i.e. alpha- and beta- of the polymer. Using
Eyring rate kinetics, the stress shift factor for the j-process,

Table 1. Flow parameters for 3 grades of polypropylene at tem-

perature, T = 25◦C. For details of the 3 grade of Polypropylene,

please refer to [12].

Material
V s,α V s,β φ∗

0,α
φ∗

0,β

[ ×10−3 m3/mol] sec

ICIW PP 3.9273 0.2956 92.21 1.852 x 10−4

PLW PP 4.1076 0.53227 93.54 1.014 x 10−4

PLB PP 4.1732 0.70634 73.37 0.822 x 10−4

where j = α, β, can be expressed in terms of the shear and
pressure activated stress factor as [20]:

aσ, j =
Vsτ

b
oct, j

2RT

exp
{

−Vpσm

RT

}

sinh

{

Vsτ
b
oct, j

2RT

} (8)

where Vs, j and Vp, j are shear- and pressure-activation
volumes respectively, for each of the j-process, R = gas
constant, and T = current temperature.

2.2.2 Conformational deviatoric stress component, Sc

The conformational deviatoric stress, Sc originates from
the entropy elastic stress of entanglements/networks of the
polymer. It is convenient to calculate the Sc directly by
differentiating the conformational free energy density, Ac

thus:

Sc
= λi

3
∑

i

∂Ac

∂λi

ui ⊗ ui − pI (9)

where p =
1
3
trace

[

∂Ac

∂λi

ui ⊗ ui

]

, λi (i = 1, . . . , 3) is the

eigenvalues of the left Cauchy-Green tensor, B while uiis

the unit eigenvectors of B, and p is an unknown hydrostatic
pressure. The definition of the conformational entropy
free energy function, Ac is derived from the physically
based function proposed by Edwards and Vilgis [23] for a
network of cross-linked and entangled freely jointed chains
of finite length regarded as chains of ‘Kuhn’ segments.

2.3 Model predictions

The constitutive mathematics developed above were im-
plemented into a MATLAB script and used initially
to predict the response of polypropylene. Also, an
ABAQUS user-defined material sub-routine was created.
A few model predictions were investigated and results
validated against compression data for three polypropylene
grades obtained across a wide range of strain rates [12].
The model parameters were adjusted to experimental data
and Table 1 shows the activation volumes and reference re-
laxation times obtained for the two viscoelastic activation
processes.
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Fig. 2. Comparison between model predictions and experiment

for compression tests under varying strain rate for reference grade

polypropylene (ICIW) at test temperature, T = 25◦C.

2.3.1 Rate-dependent response

Simulations of compression tests were carried out for
quasi-static ε̇ = 10−4s−1 and 10−1s−1) and high (ε̇ =
1500 s−1 and 9000 s−1) strain rates. Comparisons were
made with experimental data of the reference polypropy-
lene (ICIW) grade and this is shown in Fig. 2. Generally,
the model predictions agree quite well with experimental
data for linear viscoelastic, yield and post-yield constitu-
tive responses. However, the experiment shows a diffused
or broadened yield region at quasi-static rates which has
not been captured accurately by the model. The disparity is
attributed to the choice of a single-mode relaxation time. It
has been shown by Wu and Buckley, that in order to fit data
accurately around yield, a spectrum of relaxation times is
required [20].

2.3.2 Temperature-dependent response

Tensile tests on the PLB polypropylene grade at quasi-
static rates, ε̇ = 10−3 s−1 under varying temperatures
were compared with model predictions, as shown in Fig 3.
Temperature-data at high rates were not available. The ex-
periments showed a brittle response at temperatures around
room temperature, i.e. fracture before yield. At temper-
atures around the melting temperature of polypropylene
(Tm = 165 ◦C), a ductile response was observed. Com-
parison between the model and experiments agree well,
qualitatively and quantitatively.

2.3.3 Effect of de-ageing

Structural relaxation in semicrystalline polymers has been
assumed in this paper to occur not only in the amorphous
phase (through the beta-process viscoelastic relaxation),
but also through relaxation of the pseudo-amorphous phase
(by the alpha-process viscoelastic relaxation). In order to
assess the validity of this assumption, two simulations
chosen from quasi-static and high strain rates were carried
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Fig. 3. Comparison between model predictions and experiment

for tensile tests at strain rate, ε̇ = 10−3s−1 under varying

temperatures, for blended (PLB) polypropylene grade.
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Fig. 4. Comparison of compression test data and model pre-

dictions at quasi-static (QS) and high (HR) loading rates on

reference polypropylene grade at test temperature 25◦C.

out and results compared with experimental data as shown
in Fig 4. In the first simulation, only the amorphous phase
was allowed to undergo structural evolution through Tool’s
fictive temperature. A second simulation was carried out
where both alpha- and beta-processes were allowed to
undergo structural change (i.e. de-age) with plastic de-
formation. Model predictions based on incorporating or
excluding the de-ageing of the alpha-process were com-
pared with experiments, as shown in Fig. 4. The results
showed a good agreement between experiment and model
predictions in the case where de-ageing of the alpha-
process was allowed. This validates the assumption that
the structural evolution of semicrystalline polymers is not
restricted solely to the amorphous phases but as well as the
constrained non-crystalline phase.

2.3.4 Simulating nonlinear compressive yield response

The objectives here were to determine the formulation for
the rate-dependent compressive yield response and then
compare the model predictions with experiment. Based on
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Fig. 5. Prediction of rate-dependent compressive yield behaviour

of reference polypropylene (ICIW) grade at test temperature of

T = 25◦C. The predicted nonlinear Eyring function, σModel was

based on the two-process model.

the constitutive mathematics of the two process model, the
compressive yield stress can be determined by adopting the
arguments of two-process Ree-Eyring rate kinetics.

Let us define the following indices of the Ree-Eyring

kinetics as: (i) Activation index, B j = 2
Vp, j

Vs, j
; (ii) Relaxation

index, A j =
2
√

2aS , jaT, jG
b
j
φ∗

0, j

τ0, j
; (iii) mean stress index, γ j =

exp
{−σmVp, j

RT

}

; (iv) a pressure-activated stress factor, σ0, j =

RT
Vp, j

; and (v) shear-activated stress factor, τ0, j =
2RT
Vs, j

.

The compressive yield response follows two domi-
nant mechanical relaxations according to the two-process
model i.e. Processes 1 and 2. Process 1 mechanical re-
sponse is dominant at low strain rate or high temperature
test conditions while Process 2 becomes significant be-
yond a critical strain rate, ε̇critand yield stress, σcrit. At
any stage in the deformation, the two processes act co-
operatively to describe the compressive yield response of
the semicrystalline polymer leading to a total stress, σTotal.

The formulations for these processes are given thus:

σy, j
∣

∣

∣

1
=

3v jσ0, jB j√
2 − B j

{

ln A j + ln |ε̇|
}

, (10)

σy, j
∣

∣

∣

2
=

3v jσ0, jB j√
2

ln



















γ jA j

2
ε̇ +

√

(

γ jA j

2
ε̇

)2

+ 1



















,

(11)
and total stress becomes:

σy, j

∣

∣

∣

Total
= vασy, j

∣

∣

∣

1
+ vβ σy, j

∣

∣

∣

2
+ σm. (12)

The comparison between experiment and model pre-
dictions of the strain rate dependence of material yield
behaviour of PP using the proposed model based on data
of Fig. 2 is illustrated Fig. 5. This shows the interaction of
the two processes and how their co-operative effects lead
to the total stress.

Eyring plots of the two polypropylene grades are
shown in Fig. 6.
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3 Conclusions

The constitutive behaviour of semicrystalline polymers
has not previously been modelled across a wide range
of strain-rates extending up to impact rates. This paper
presents a three-dimensional physically-based constitutive
model for polypropylene, based on the well-known phys-
ical framework of rate-dependent deformation proposed
by Bauwens which established a correlation between the
observed transition in flow stress of a material and the
secondary beta-transition of viscoelastic behaviour. It was
assumed that the overall stress experienced by the semi-
crystalline polymer results from a parallel contribution of
an elasto-viscoplastic stress in the amorphous, crystalline
and pseudo-zones of the microstructure, with the contribut-
ing stresses weighted by a crystallinity parameter. Also, the
model has been validated against compression tests carried
out on two grades of PP tested across eight decades of
time. Model predictions were found to agree quite well
with the linear viscoelastic, rate-dependent yield and post-
yield strain softening of polypropylene.
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