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ABSTRACT 

 

The idea of Defect Correction Method (DCM) has been around for a long time. It can be 

used in a number of different ways and can be applied to solve various linear and non-

linear problems. Most defect correction related methods were used in conjunction with 

discretisation methods and two-level multigrid methods. This thesis examines how 

various iterative methods, both for linear and nonlinear problems, may be built into a 

unified framework through the use of defect correction. The framework is extended to 

the area of Computational Aeroacoustics (CAA) where sound waves generated by the 

pressure fluctuations are typically several orders of magnitude smaller than the pressure 

variations in the main flow field that accounts for flow acceleration. A decomposition of 

variables is used to break down the components of a typical flow variable into (1) the 

mean flow, (2) flow perturbations or aerodynamic sources of sound, and (3) the acoustic 

perturbation. The framework as discussed in this thesis would incorporate such variable 

decomposition.  The basic principle of DCM can be applied to recover the propagating 

acoustic perturbation through a coupling technique.  This provides an excellent concept 

in the re-use of existing commercial CFD software based on the framework and in the 

retrieval of acoustic pressure.  Numerical examples demonstrating the defect correction 

framework for a typical car sun-roof problem was examined with promising numerical 

results.  To this end the complete process of coupling Reynolds average Navier-Stokes 

and the Helmholtz equation is also presented using the DCM framework. 

The DCM framework is also extended to handle higher order numerical methods for 

the numerical solutions of partial differential equations leading to an easy re-use of 

existing software approximating derivatives with a lower order discretisation.  Numerical 

experiments were performed to demonstrate the capability of the DCM framework.  It is 

also used to a simplified 2-D problems aiming at the understanding of Large Eddy 

Simulation (LES) and filtering techniques.  To this end the framework of DCM leads to 

an efficient and robust software implementation for many CFD and aeroacoustic 

computation in a simple nutshell.    
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Chapter  1 INTRODUCION 
 

Given a mathematical problem with an approximate solution, the residue or defect may 

be defined as a quantity that may be used to measure how well the problem has been 

solved. Such information may then be used in a simplified version of the original 

mathematical problem to provide an appropriate correction quantity. The correction can 

then be applied to correct the approximate solution in order to obtain a better 

approximate solution to the original mathematical problem. Such idea has been around 

for a long time and in fact has been used in a number of different ways. 

This chapter gives a brief introduction to the concept of DCM and how it can be 

applied to solve various linear and non-linear problems. The objectives and an outline of 

this thesis are presented at the end of this chapter. 

 

1.1 The Defect Correction Concept 

The term “defect correction” can be introduced to characterize a class of methods for the 

improvement of an approximate solution of an operator equation. This class of methods 

includes many well-known techniques, such as Newton’s method, which may be used to 

improve an approximate solution of a given operator equation by an iterative scheme. 

Defect correction is also a very useful method for solving differential equations. 

Most early papers concerning defect corrections point to the work of Fox [Fox, 1947] as 

the first example of using defect corrections for the solution of ODEs. The work of Fox 

focused mainly on the solution of boundary value ODEs and PDEs. 
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Defect corrections have seen far less use in methods for initial value ODEs. 

Zadunaisky may have been the first to use deferred corrections in this context in his work 

concerning the accuracy of numerical approximation of orbits [Zadunaisky, 1964, 1976]. 

These ideas were analysed and incorporated into numerical methods in early papers by 

Stetter [Stetter, 1974] and Frank and Ueberhuber [Frank, Ueberhuber, 1977]. Deferred 

correction method is the predecessor form of DCM with further iterative technique 

improvement. 

The defect correction approach in its basic idea can be explained as below: 

For a given mathematical problem and a given approximate solution, 

 define the defect as a quantity which indicates how well the problem has been 

solved, i.e. the residual of the approximate solution when it is substituted into 

the mathematical problem, 

 use this information in a simplified version of the problem, the defect correction 

equation, to obtain an appropriate correction quantity, 

 apply this correction to the approximate solution to obtain a new (better) 

approximate solution. 

Naturally, the procedure may be repeated until the defect, which can be used as a 

stopping criterion in the iterative scheme, becomes small enough to be neglected. 

 

1.2 Some Historical Examples of the DCM 

One prototype of the DCM is the classical procedure for the calculation of a zero of a 

nonlinear equation of a single variable. An approximation 𝑥�  of the solution 𝑥  of the 

nonlinear function 

𝐹(𝑥) = 0       (1.2.1) 

is substituted into 𝐹; the value of 𝐹(𝑥�) is defined as the defect. A simplified version of 

(1.2.1) that yields the correction 𝑣 to 𝑥� is some local linearization such as the Newton 

linearisation 

𝐹(𝑥�) + 𝑣𝐹′(𝑥�) = 0,      (1.2.2) 
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where 𝑣 = 𝑥 − 𝑥�  is known as the correction. Here (1.2.2) is the defect correction 

equation. The method is to repeat the above steps in order to obtain a better refined 

approximate solution where 𝐹′(𝑥�) is updated at every step of the iterative process. 

Another well-known prototype is the “iterative refinement method” 

(“Nachiteration”), which is an iterative method proposed by Wilkinson [Wilkinson, 1963] 

used to improve the accuracy of the numerical solution to systems of linear equations.  

When solving a system of linear algebraic equations 

𝐴𝑥 = 𝑏,      (1.2.3) 

due to the presence of rounding errors, the computed solution, from a direct solution 

procedure, or an approximate solution, 𝑥� , has an unknown round-off contamination. 

Hence, there is the defect 

𝑟 ≔ 𝑏 − 𝐴𝑥� ≠ 0.      (1.2.4) 

Subtracting 𝐴𝑥� on both side of equation (1.2.3), one obtains 

𝐴(𝑥 − 𝑥�) = 𝑏 − 𝐴𝑥�,      (1.2.5) 

such that 

𝐴𝑣 = 𝑟      (1.2.6) 

where 𝑣 = 𝑥 − 𝑥� is the correction. Then the previous solution process is used once more 

to compute 𝑣 from (1.2.6) so that 𝑥�� = 𝑥� + 𝑣. The disadvantage here is that the problem 

(1.2.6) is as difficult as the one in (1.2.3). In other words, a simplified version of the 

original problem is not created in this process. 

Consider a general operator equation 

𝐿𝑢 = 𝑓      (1.2.7) 

where 𝐿 is a linear operator and 𝑓 is a given function. The operator 𝐿 is either a linear 

differential operator or its discretised representation. It is possible to split 𝐿 into two parts, 

i.e. 𝐿1 and 𝐿2. The given equation can then be rewritten as  

(𝐿1 + 𝐿2)𝑢 = 𝑓,      (1.2.8) 

re-arranging to give 

𝐿1𝑢 = 𝑓 − 𝐿2𝑢.      (1.2.9) 
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Using certain generic notation, an iterative scheme for (1.2.7) becomes  

𝐿1𝑢𝑁𝐸𝑊 = 𝑓 − 𝐿2𝑢𝑂𝐿𝐷 .     (1.2.10) 

For linear operator, subtracting 𝐿1𝑢𝑂𝐿𝐷 on both side of (1.2.10) leads to 

𝐿1(𝑢𝑁𝐸𝑊 − 𝑢𝑂𝐿𝐷) = 𝑓 − 𝐿2𝑢𝑂𝐿𝐷 − 𝐿1𝑢𝑂𝐿𝐷,    (1.2.11) 

i.e. 

𝐿1𝑣 = 𝑓 − (𝐿1 + 𝐿2)𝑢𝑂𝐿𝐷,     (1.2.12) 

hence the defect correction equation 

𝑣 = 𝐿1−1𝑟      (1.2.13) 

where  

𝑟 = 𝑓 − 𝐿𝑢𝑂𝐿𝐷.     (1.2.14) 

Unlike the linear algebraic system in the previous example where there is no other choice 

of a simpler problem, the inverse of 𝐿1 is usually chosen to be easier to compute.  After 

finding 𝑣 from the simpler problem (1.2.13), the new iterative approximation is obtained 

by calculating 𝑢𝑁𝐸𝑊 = 𝑢𝑂𝐿𝐷 + 𝑣 . This process can be done iteratively until 𝑣  or 𝑟 

satisfies certain stopping criterion. 

 

1.3 Further Applications in Different Context 

1.3.1 Jacobi and Gauss-Seidel Methods 

In numerical linear algebra, the Jacobi method is an iterative algorithm for determining 

the solutions of a system of linear equations for diagonal dominant matrices. Each 

equation is re-arranged so that the diagonal dominant term is made the subject. Following 

the splitting concept as discussed in (1.2.8), two classical iterative methods, Jacobi and 

Gauss-Seidel methods, are presented in terms of the defect correction concept. 

Given the system of 𝑛 linear equations 

𝐴𝑥 = 𝑏      (1.3.1) 
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where 𝐴 = �

𝑎11 𝑎12 ⋯ 𝑎1𝑛
𝑎21 𝑎22 ⋯ 𝑎2𝑛
⋮
𝑎𝑛1

⋮
𝑎𝑛2

⋱
⋯

⋮
𝑎𝑛𝑛

�, 𝑥 = �

𝑥1
𝑥2
⋮
𝑥𝑛

�, 𝑏 = �

𝑏1
𝑏2
⋮
𝑏𝑛

�.  Then 𝐴 can be decomposed into 

a diagonal component 𝐷 and an off diagonal component 𝑅: 

𝐴 = 𝐷 + 𝑅       (1.3.2) 

where 𝐷 = �

𝑎11 0 ⋯ 0
0 𝑎22 ⋯ 0
⋮
0

⋮
0

⋱
⋯

⋮
𝑎𝑛𝑛

� and 𝑅 = �

0 𝑎12 ⋯ 𝑎1𝑛
𝑎21 0 ⋯ 𝑎2𝑛
⋮
𝑎𝑛1

⋮
𝑎𝑛2

⋱
⋯

⋮
0

�.  Hence, 

(𝐷 + 𝑅)𝑥 = 𝑏      (1.3.3) 

In an iterative scheme, where superscript 𝑘  denotes the number of iterations, (1.3.3) 

becomes  

𝐷𝑥𝑘+1 = 𝑏 − 𝑅𝑥𝑘.     (1.3.4) 

Subtracting 𝐷𝑥𝑘 on both side 

𝐷(𝑥𝑘+1 − 𝑥𝑘) = 𝑏 − 𝑅𝑥𝑘 − 𝐷𝑥𝑘.    (1.3.5) 

Hence, the simplified problem for Jacobi iterative method is 

𝐷𝑣 = 𝑏 − 𝐴𝑥𝑘,     (1.3.6) 

i.e. 

𝑣 = 𝐷−1𝑟𝑘,      (1.3.7) 

where the residual  𝑟𝑘 = 𝑏 − 𝐴𝑥𝑘 and the new iterative approximation can be calculated 

as 𝑥𝑘+1 = 𝑥𝑘 + 𝑣. The element-based formula is given by 

𝑥𝑖𝑘+1 = 𝑥𝑖𝑘 + 1
𝑎𝑖𝑖

(𝑏𝑖 − ∑ 𝑎𝑖𝑗
𝑗=𝑛
𝑗=1 𝑥𝑖𝑘)    (1.3.8) 

where 𝑖 = 1,2, … ,𝑛 . Note that the computation of 𝑥𝑖𝑘+1  requires each element in 𝑥𝑘 

except itself.  

For Gauss-Seidel method, 𝐴 is split differently into a lower triangular component 𝐿∗, 

and a strictly upper triangular component 𝑈: 

𝐴 = 𝐿∗ + 𝑈       (1.3.9) 
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where 𝐿∗ = �

𝑎11
𝑎21
⋮
𝑎𝑛1

0
𝑎22
⋮
𝑎𝑛2

⋯
⋯
⋱
⋯

0
0
⋮
𝑎𝑛𝑛

� and 𝑈 = �
0
0
⋮
0

𝑎12
0
⋮
0

⋯
⋯
⋱
⋯

𝑎1𝑛
𝑎2𝑛
⋮
0
�, hence 

(𝐿∗ + 𝑈)𝑥 = 𝑏 or 𝐿∗𝑥 = 𝑏 − 𝑈𝑥.    (1.3.10) 

The Gauss–Seidel method is an iterative technique that solves the left hand side of 

this expression for x, using previous value for x on the right hand side. This may be 

written as 

(𝐿∗)𝑥𝑘+1 = 𝑏 − 𝑈𝑥𝑘.     (1.3.11) 

Subtracting 𝐿∗𝑥𝑘 on both side 

𝐿∗(𝑥𝑘+1 − 𝑥𝑘) = 𝑏 − 𝑈𝑥𝑘 − 𝐿∗𝑥𝑘.   (1.3.12) 

Hence, 

𝑣 = 𝐿∗−1(𝑏 − 𝐴𝑥𝑘),     (1.3.13) 

in order to obtain 𝑥𝑘+1 = 𝑥𝑘 + 𝑣. 

When splitting 𝐴 in (1.3.9), by taking advantage of the triangular form of 𝐿∗, it uses 

previously computed results as soon as they are available. Hence, the elements of 𝑥𝑘+1 

can be computed sequentially using forward substitution: 

𝑥𝑖𝑘+1 = 𝑥𝑖𝑘 + 1
𝑎𝑖𝑖

(𝑏𝑖 − ∑ 𝑎𝑖𝑗𝑗<𝑖 𝑥𝑗𝑘+1 − ∑ 𝑎𝑖𝑗𝑗>𝑖 𝑥𝑗𝑘)  (1.3.14) 

where 𝑖 = 1,2, … ,𝑛. 

 

1.3.2 Newton’s Method 

This section examines an application of the defect correction concept to a nonlinear 

system of equations consisting of two equations with two unknowns.   

𝑓𝑖(𝑥1, 𝑥2) = 0;           𝑖 = 1,2.   (1.3.15) 

Let 𝑥 = [𝑥1   𝑥2]𝑇. The above equation may be written as 

𝑓𝑖�𝑥� = 0;           𝑖 = 1,2.   (1.3.16) 
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As in the single variable case an initial approximation 𝑥(0) = [𝑥1(0)   𝑥2(0)]𝑇 is used in 

seeking an improved approximation 𝑥(1) = 𝑥(0) + Δ𝑥 , where 𝑥(1) = [𝑥1
(1)   𝑥2

(1)]𝑇 , 

∆𝑥 = [∆𝑥1   ∆𝑥2  ]𝑇 and 𝑥𝑖(1) = 𝑥𝑖(0) + ∆𝑥𝑖. 

Apply the concept of the Taylor series expansion – see the derivation below using 

functions of two variables as an example. If the truncation of the series takes place 

immediately after the first derivative terms of the series, one obtains 

𝑓𝑖�𝑥0 + Δ𝑥� ≡ 0 ≈ 𝑓𝑖�𝑥� + �∆𝑥𝑗
𝜕𝑓𝑖�𝑥0�
𝜕𝑥𝑗

+
1
2!
��∆𝑥𝑗

𝜕
𝜕𝑥𝑗

�
2

𝑓𝑖�𝑥0� +  ⋯  +
𝑗=2

𝑗=1

𝑗=2

𝑗=1

 

1
𝑚!
∑ �∆𝑥𝑗

𝜕
𝜕𝑥𝑗
�
𝑚
𝑓𝑖�𝑥0�

𝑗=2
𝑗=1 ;    (1.3.17) 

where 𝑖 = 1,2.  Hence, 

∑ ∆𝑥𝑗
𝜕𝑓𝑖�𝑥0�
𝜕𝑥𝑗

𝑗=2
𝑗=1 ≈ −𝑓𝑖�𝑥�;           𝑖 = 1,2.  (1.3.18) 

In matrix form equation (1.3.18) can be written as a simpler form of the original 

nonlinear system, i.e. 

𝐽∆𝑥 = −𝑓     (1.3.19) 

where 𝑓 = �
𝑓1(𝑥)
𝑓2(𝑥)� and 𝐽 is known as the Jacobian.  Therefore, the correction ∆𝑥 can be 

calculated as 

∆𝑥 = −𝐽−1𝑓,     (1.3.20) 

and the new iterative approximation is  calculated as 𝑥𝑖
(1) = 𝑥𝑖

(0) + ∆𝑥𝑖. Equation (1.3.20) 

also applies to the case of 𝑛 equations. 

 

1.3.3 Solving Nonlinear Differential Equations 

This section considers a defect correction approach for the solutions of nonlinear 

differential equations. 

Consider a given functional equation 𝐹(𝑢,𝑢′,𝑢′′) = 0 which describes a nonlinear 

second order differential equation. Let 𝑠 = (𝑢 𝑢′ 𝑢′′)𝑡  be the exact solution, 𝑠̃ =

(𝑢� 𝑢�′ 𝑢�′′)𝑡  be an approximate solution, and 𝑉 = (𝑣 𝑣′ 𝑣′′)𝑡 = 𝑠 − 𝑠̃   be the 
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correction. Note that 𝐹(𝑢� ,𝑢�′,𝑢�′′) ≠ 0. Expand 𝐹(𝑢� + 𝑣,𝑢�′ + 𝑣′,𝑢�′′ + 𝑣′′) up to the first 

order term leads to 

𝐹(𝑢� + 𝑣,𝑢�′ + 𝑣′,𝑢�′′ + 𝑣′′) = 𝐹(𝑢� ,𝑢�′,𝑢�′′) + �𝜕𝐹
𝜕𝑢�
𝑣 + 𝜕𝐹

𝜕𝑢�′
𝑣′ + 𝜕𝐹

𝜕𝑢�′′
𝑣′′� ≡ 0, (1.3.21) 

where high order terms are ignored. The above equation is rearranged to a linearised 

equation given by  

𝜕𝐹
𝜕𝑢�
𝑣 + 𝜕𝐹

𝜕𝑢�′
𝑣′ + 𝜕𝐹

𝜕𝑢�′′
𝑣′′ = −𝐹(𝑢� ,𝑢�′,𝑢�′′).  (1.3.22) 

Equation (1.3.22) is a linear differential equation involving the correction term 𝑣 . 

Analytical or numerical solution may be obtained by solving the defect correction 

equation (1.3.22). An improved approximation can be obtained by 𝑠̃̃ = 𝑠̃ + 𝑣, or 𝑢�� = 𝑢� +

𝑣, 𝑢��′ = 𝑢�′ + 𝑣′, 𝑢��′′ = 𝑢�′′ + 𝑣′′. 

Using a generic notation for iteration, the example below is used to illustrate the 

above method.  

𝐹(𝑢, 𝑢′,𝑢′′) = 𝑢′′ − 𝑓(𝑢, 𝑢′,𝑢′′)𝑢′ = 0,   (1.3.23) 

where 𝑢 = 𝑢(𝑥) .Let 𝑣 = 𝑢𝑘+1 − 𝑢𝑘 ; 𝑣′ = 𝑢′𝑘+1 − 𝑢′𝑘 ; 𝑣′′ = 𝑢′′𝑘+1 − 𝑢′′𝑘 . Equation 

(1.3.22) is rewritten in the simplified form as 

𝐹𝑘 + 𝜕𝐹𝑘

𝜕𝑢𝑘
𝑣 + 𝜕𝐹𝑘

𝜕𝑢′𝑘
𝑣′ + 𝜕𝐹𝑘

𝜕𝑢′′𝑘
𝑣′′ = 0,   (1.3.24) 

where 𝐹𝑘 = 𝐹(𝑢𝑘,𝑢′𝑘 ,𝑢′′𝑘)  and 𝑢𝑘  is the 𝑘 th iterative approximation of 𝑢 .  The 

derivative terms for the example in equation (1.3.23) are given as below: 

𝜕𝐹𝑘

𝜕𝑢𝑘
= − 𝜕𝑓𝑘

𝜕𝑢𝑘
𝑢′𝑘; 

𝜕𝐹𝑘

𝜕𝑢′𝑘
= − 𝜕𝑓𝑘

𝜕𝑢′𝑘
𝑢′𝑘 − 𝑓𝑘; 

𝜕𝐹𝑘

𝜕𝑢′′𝑘
= 1. 

Hence (1.3.24) becomes 

𝐹𝑘 + (−𝜕𝑓𝑘

𝜕𝑢𝑘
𝑢′𝑘)𝑣 + (− 𝜕𝑓𝑘

𝜕𝑢′𝑘
𝑢′𝑘 − 𝑓𝑘)𝑣′ + 𝑣′′ = 0. (1.3.25) 

Then calculate 𝑣 such that 

𝑣′′ + (− 𝜕𝑓𝑘

𝜕𝑢′𝑘
𝑢′𝑘 − 𝑓𝑘)𝑣′ + (−𝜕𝑓𝑘

𝜕𝑢𝑘
𝑢′𝑘)𝑣 = −𝐹𝑘,  (1.3.26) 
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subject to homogeneous boundary conditions. Finally the iterative approximations can be 

obtained as 

𝑢𝑘+1 = 𝑢𝑘 + 𝑣 

𝑢′𝑘+1 = 𝑢′𝑘 + 𝑣′ 

𝑢′′𝑘+1 = 𝑢′′𝑘 + 𝑣′′. 

 

1.3.4 Ordinary Differential Equations 

The defect correction concept has an equivalent form known as the deferred correction 

can be applied to first order ordinary differential equations. It takes a low order scheme 

in obtaining an approximate solution and projects it to a high order scheme by calculating 

the residual and solving for the correction.  

The classical defect correction procedure was developed by Pereyra [Pereyra, 1966, 

1969]. The deferred correction procedure was developed in Dutt, Greengard & Rokhlin 

[Dutt et al, 2000]. The latter procedure is discussed here. 

Consider the initial value problem 

𝑦′(𝑡) = 𝑓(𝑡,𝑦(𝑡))    (1.3.27) 

with initial value 𝑦(0) = 𝑦0 is used here to demonstrate the concept. 

Let 𝑦(𝑡) denote the exact solution to (1.3.27). A time integration numerical method 

with step length ∆𝑡 yields 𝑢𝑗 , an approximate solution to 𝑦((𝑗 − 1)∆𝑡), with 𝑢0 = 𝑦0. A 

continuous interpolate 𝑢(𝑡)  from the discrete values 𝑢𝑗  can be built. Define the 

residual/defect 

𝑟(𝑡) = 𝑓�𝑡,𝑢(𝑡)� − 𝑢′(𝑡),    (1.3.28) 

which is used to measure how well 𝑢(𝑡) satisfies (1.3.27). 

The correction 𝑣(𝑡) = 𝑦(𝑡) − 𝑢(𝑡) also satisfies an initial value problem, given by 

                                                    𝑣′(𝑡) = 𝑦′(𝑡) − 𝑢′(𝑡) 

                                                              = 𝑓�𝑡,𝑦(𝑡)� − 𝑓�𝑡,𝑢(𝑡)� + 𝑟(𝑡) 

                                                              = 𝑓(𝑡,𝑢(𝑡) + 𝑣(𝑡)) − 𝑓�𝑡,𝑢(𝑡)� + 𝑟(𝑡) 

= 𝐹(𝑡,𝑢(𝑡), 𝑣(𝑡)) + 𝑟(𝑡)                            (1.3.29) 
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with initial value 𝑣(0) = 0 , where 𝐹(𝑡,𝑢, 𝑣) =  𝑓(𝑡, 𝑢 + 𝑣) − 𝑓(𝑡,𝑢) . The defect 

correction problem given in (1.3.29) is of the same form as (1.3.27) and it can be solved 

using the same numerical method, to obtain an approximation 𝑣� to 𝑣. The solution update 

is thus 𝑢𝑁𝐸𝑊 = 𝑢(𝑡) + 𝑣�(𝑡) . The method depends on the choice of 𝐹  and its 

approximation 𝑢(𝑡). 

 

1.3.5 Multi-Scale Problems 

Many problems of fundamental and practical importance are of multi-scale nature. As a 

typical example, the velocity field in turbulent transport problems fluctuates randomly 

and contains many scales depending on the Reynolds number of the flow. Another 

example of multi-scale problems can refer to a system that consist of a large-scale/main 

stream and a small-scale/noise component, where the small-scale component is much 

smaller than the large-scale component by magnitude. The system as a whole can be 

difficult to solve. One technique is to separate the two components and obtain an 

approximate solution assuming the small-scale component is negligible, then apply DCM 

in order to use the same or simplified solver to solve the correction term using the small-

scale component. 

Consider the linear system in (1.3.1) with the r.h.s. being perturbed with the noise 

𝜖𝑏′, i.e. 

𝐴𝑥 = 𝑏 + 𝜖𝑏′,     (1.3.30) 

where 𝜖 is a small parameter. Suppose the unperturbed system 

𝐴𝑥� = 𝑏,     (1.3.31) 

is solved leading to the solution 𝑥� = 𝐴−1𝑏.  𝑥� is obviously very close to the solution of 

(1.3.30).  Computing the defect 

𝑟 = 𝑏 + 𝜖𝑏′ − 𝐴𝑥�,    (1.3.32) 

leads to 

𝑟 = 𝜖𝑏′.     (1.3.33) 

Comparing the two solutions 𝑥�and 𝑥 by subtracting Equation (1.3.31) from (1.3.30), i.e. 

𝐴(𝑥 − 𝑥�) = 𝜖𝑏′.    (1.3.34) 



11 

 

Putting 𝑣 = 𝑥 − 𝑥� leads to 𝐴(𝑣) = 𝜖𝑏′ where the solution is 

𝑣 = 𝜖𝐴−1𝑏′.     (1.3.35) 

The true solution of the perturbed linear system in (1.3.30) can be retrieved as 𝑥 = 𝑥� + 𝑣. 

The above concept can easily be demonstrated by using a linear system of equations 

given here: 

�
2 3 1
5 6 4
3 2 0.2

��
𝑥
𝑦
𝑧
� = �

4.001
6.001
2.001

�,    (1.3.36) 

which can be rewritten in the form of Equation  (1.3.30) 

�
2 3 1
5 6 4
3 2 0.2

��
𝑥
𝑦
𝑧
� = �

4
6
2
� + 0.001�

1
1
1
�.   (1.3.37) 

In many applications there are problems where the matrix elements may be 

contaminated with noise such as 𝜖𝐴′. Equation (1.3.1) can be rewritten as 

(𝐴 + 𝜖𝐴′)𝑥 = 𝑏,     (1.3.38) 

where 𝜖𝐴′ is known as the noise.  Again, the unperturbed system 

𝐴𝑥� = 𝑏,     (1.3.39) 

has solution 𝑥� = 𝐴−1𝑏 which is close to the exact solution of (1.3.38).  The defect can be 

calculated as 

𝑟 = 𝑏 − (𝐴 + 𝜖𝐴′)𝑥�,     (1.3.40) 

hence 

𝑟 = −𝜖𝐴′𝑥�.     (1.3.41) 

Subtracting Equation (1.3.39) from (1.3.38) leads to the defect correction equation: 

𝐴𝑣 = 𝑟,     (1.3.42) 

where 𝑣 = 𝑥 − 𝑥�.  The above problem can be solved in an iterative manner, until 𝑟 is 

small enough to be neglected. Note that the defect correction equation 𝐴𝑣 = 𝑟 is no more 

simpler in terms of the solution process compare to the original unperturbed problem. 

The above concept can be demonstrated with the example below. 
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�
2.003 3.001 1.001

5 6.002 4
3.003 2 0.205

��
𝑥
𝑦
𝑧
� = �

1
1
1
�    (1.3.43) 

which is rewritten in the form of Equation (1.3.38) 

�
2 3 1
5 6 4
3 2 0.2

��
𝑥
𝑦
𝑧
� + 0.001�

3 1 1
0 2 0
3 0 5

��
𝑥
𝑦
𝑧
� = �

1
1
1
�.   (1.3.44) 

The DCM can be easily adapted to problems which exhibit multiple scale solutions. 

Here is a perturbed first order differential equation 

𝑑𝑢
𝑑𝑡

= −1 − 𝜖𝑢,     (1.3.45) 

subject to the initial condition  𝑢(0) = 1 that is used to illustrate the idea.  The solution 

of (1.3.35) exhibits multi-scale behaviour.  A series solution such as 𝑢 = ∑ 𝑢𝑖𝑖=∞
𝑖=0  is 

usually used to represent such solution. Here the DCM is demonstrated using a finite 

series such as 

𝑢 = 𝑢0 + 𝑢1 + 𝑢2 + 𝑢3,    (1.3.47) 

where 𝑢0 ≫ 𝑢1 ≫ 𝑢2 ≫ 𝑢3.  Assuming it is possible to solve 

𝑑𝑢
𝑑𝑡

= 𝑓(𝑡),     (1.3.46) 

subject to suitable initial condition, and 𝑓(𝑡) is a function of 𝑡 only.   

Step 1: Obtain the solution of the unperturbed problem,  

𝑑𝑢0
𝑑𝑡

= −1,     (1.3.48) 

with initial value 𝑢0(0) = 1.  Integrating (1.3.48) with respect to 𝑡 leads to 

𝑢0(𝑡) = 1 − 𝑡.     (1.3.49) 

The defect/residual of the solution  𝑢0 can be calculated as 

                                              𝑟 = −1 − 𝜖𝑢0 −
d𝑢0
dt

 

                                                       = −1 − 𝜖(1 − 𝑡) − (−1) 

= 𝜖(𝑡 − 1).                               (1.3.50) 

Step 2: Solve the defect correction problem 

𝑑𝑢1
𝑑𝑡

= 𝑟 = 𝜖(𝑡 − 1),    (1.3.51) 
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with initial value 0)0(1 =u . Integrating (1.3.51) with respect to 𝑡 leads to 

𝑢1(𝑡) = 𝜖(𝑡
2

2
− 𝑡).    (1.3.52) 

𝑢1(𝑡) is considered as the correction to 𝑢0 , hence the new approximation solution 𝑢 

becomes 

𝑢𝑁𝐸𝑊 = 𝑢0 + 𝑢1 = 1 − 𝑡 + 𝜖 �𝑡
2

2
− 𝑡�,  (1.3.53) 

and 

𝑑𝑢𝑁𝐸𝑊

𝑑𝑡
= −1 + 𝜖(𝑡 − 1).   (1.3.54) 

Hence the defect due to 𝑢𝑁𝐸𝑊 is  

                                              𝑟 = −1 − 𝜖𝑢𝑁𝐸𝑊 − du𝑁𝐸𝑊

dt
 

                                                       = −1 − 𝜖 �1 − 𝑡 − 𝜖 �𝑡
2

2
− 𝑡�� − [−1 + 𝜖(𝑡 − 1)] 

= 𝜖2(𝑡 − 𝑡2

2
).                               (1.3.55) 

Step 3: Solve yet another defect correction problem 

𝑑𝑢2
𝑑𝑡

= 𝑟 = 𝜖2(𝑡 − 𝑡2

2
),    (1.3.56) 

with initial value 0)0(2 =u . Integrating (1.3.56) with respect to 𝑡 leads to 

𝑢2(𝑡) = 𝜖2(𝑡
2

2
− 𝑡3

6
).    (1.3.57) 

Hence the new approximate is 

𝑢𝑁𝐸𝑊 = 𝑢0 + 𝑢1 + 𝑢2 = 1 − 𝑡 + 𝜖 �𝑡
2

2
− 𝑡� + 𝜖2(𝑡

2

2
− 𝑡3

6
),  (1.3.58) 

and that 

𝑑𝑢𝑁𝐸𝑊

𝑑𝑡
= −1 + 𝜖(𝑡 − 1) + 𝜖2(𝑡 − 𝑡2

2
).  (1.3.59) 

Hence the defect is  

                                              𝑟 = −1 − 𝜖𝑢𝑁𝐸𝑊 − 𝑑𝑢𝑁𝐸𝑊

𝑑𝑡
 

= 𝜖3(𝑡
3

6
− 𝑡2

2
).                               (1.3.60) 
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Step 4: solve  

𝑑𝑢3
𝑑𝑡

= 𝑟 = 𝜖3(𝑡
3

6
− 𝑡2

2
),   (1.3.61) 

with initial value 0)0(3 =u . Integrating (1.3.61) with respect to 𝑡 leads to 

𝑢3(𝑡) = 𝜖3(𝑡
4

24
− 𝑡3

6
).    (1.3.62) 

Finally the latest updated solution becomes 

                           𝑢𝑁𝐸𝑊 = 𝑢0 + 𝑢1 + 𝑢2 + 𝑢3 

= 1 − 𝑡 + 𝜖 �𝑡
2

2
− 𝑡� + 𝜖2 �𝑡

2

2
− 𝑡3

6
� + 𝜖3(𝑡

4

24
− 𝑡3

6
).            (1.3.63) 

The process may be carried on until terms of high order 𝜖  are very small. Note that 

(1.3.63) provides an understanding of the properties of the solution in terms on 𝜖 and the 

dependence of 𝑡 in terms of 𝜖. 

 

1.4 General Defect Correction Principle 

Several important applications of the defect correction concept are discussed in the 

previous section. It can be seem that the steps involved in the DCM may be easily 

automated in a computational environment. In this section an attempt is made to present a 

general framework such that various applications discussed so far may be studied under 

the framework. It is hoped that this framework may also be used with suitable 

modification for aeroacoustics and some related fluid dynamics and numerical algorithms. 

Consider the general problem 

𝐿𝑢 = 𝑓,     (1.4.1) 

where 𝐿 is an operator, linear or non-linear, 𝑢 is a function defined over certain domain Ω 

and 𝑓 is defined on Ω. For example 𝐿 could be a linear or non-linear differential operator, 

or some finite difference replacement of a differential operator. Let 𝑢∗ be the solution of 

the problem in (1.4.1). 

Assuming that (1.4.1) cannot be solved directly but an approximate solution 𝑢� ∈ Ω 

may be evaluated. The defect can then be calculated as 

𝑟(𝑢�) ∶= 𝑓 − 𝐿𝑢� .     (1.4.2) 
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Furthermore, as described by Bohmer and Stetter [Böhmer, Stetter, 1984], assuming that 

the approximate problem 

𝐿�𝑢 = 𝑓     (1.4.3) 

can be solved for 𝑓 , i.e. that the solution operator 𝐺�  of (1.4.3) exists and is an 

approximate inverse of 𝐿 such that 

𝐺�(𝐿𝑢�) ≈ 𝑢�      (1.4.4) 

and 

𝐿(𝐺�(𝑢�)) ≈ 𝑢� .     (1.4.5) 

Now assuming some approximation 𝑢�  for 𝑢∗ is given and that its defect (1.4.2) has 

been computed. In the general nonlinear case, there are two ways to use this information 

for the computation of an improved approximation 𝑢��  by means of solving an 

approximate problem defined in (1.4.3). 

(A) Compute the change 𝑣  in the solution of (1.4.3) when the right hand side 𝑓  is 

changed by 𝑟(𝑢�). Then use 𝑣 as a correction to 𝑢� , i.e. transfer the observed change to the 

target problem (1.4.1): 

𝑢�� ∶= 𝑢� + 𝑣 = 𝑢� + [𝐺�(𝑓) − 𝐺��𝑓 − 𝑟(𝑢�)�],   (1.4.6) 

and using (1.4.2) to obtain 

𝑢�� = 𝑢� + 𝐺�(𝑓) − 𝐺�(𝐿𝑢�).    (1.4.7) 

(B) Generate an equation (1.4.3) with solution 𝑢�  and change its right-hand side 𝑙 = 𝐿�𝑢�  by 

𝑟(𝑢�). Then take the solution of this modified equation as 𝑢�� , i.e. again transfer the effect 

observed for (1.4.3) to the target problem (1.4.1): 

𝑙 ∶= 𝑙 + 𝑟(𝑢�) = 𝑙 + 𝑓 − 𝐿 �𝐺��𝑙��, 

𝑢�� ∶= 𝐺� �𝑙� = 𝐺���𝐿� − 𝐿�𝑢� + 𝑓�.                       (1.4.8) 

Note that it is the existence of 𝐺�  and not of 𝐿� = 𝐺�−1  which is essential, as is 

immediately clear from (1.4.7) and (1.4.8). In some respect, versions (A) and (B) appear 

dual to each other. 

In both approaches, the arising problems with modified right-hand sides are often 

called neighbouring problems [Auzinger et al, 2002].  In the context of this thesis it is 
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also known as the defect correction equation/problem or the simplified problem. In some 

applications, the operator 𝐿� − 𝐿 in (1.4.8) is much simpler than either 𝐿� or 𝐿 so that there 

is an advantage in using approach (B). 

The success of the basic defect correction steps (1.4.7) or (1.4.8) depends on the 

contractivity of the operations �𝐼 − 𝐺�(𝐿)�  or �𝐼 − 𝐿�𝐺���  respectively, since (1.4.7) 

implies 

𝑢�� − 𝑢∗ = �𝐼 − 𝐺�(𝐿)� 𝑢� − (𝐼 − 𝐺�(𝐿))𝑢∗   (1.4.9) 

while (1.4.8) implies, with 𝐺�(𝑙∗) = 𝑢∗, 

𝑙 − 𝑙∗ = �𝐼 − 𝐿�𝐺��� 𝑙 − (𝐼 − 𝐿�𝐺��)𝑙∗.   (1.4.10) 

The contractivity is, of course, closely related to the approximate inverse property of 

𝐺�, cf. (1.4.4) and (1.4.5) respectively. 

The element 𝑢��  which is gained through defect correction may be used in two ways: 

• interpret 𝑢� − 𝑢��  as an estimate of the error 𝑢� − 𝑢∗  of the original 

approximation 𝑢�  

• subject 𝑢��  as the new approximation to another defect correction step. 

The iterative use of the basic defect correction procedures (1.4.7) or (1.4.8) leads to 

the Iterative Defect Correction (IDeC) algorithms of Stetter [Stetter, 1974]: 

(A)                                            𝑢(𝑘+1) ∶= 𝑢(𝑘) + 𝐺�(𝑓) − 𝐺��𝐿𝑢(𝑘)�,                (1.4.11) 

(B)                               𝑙(𝑘+1) ∶= 𝑙(𝑘) + 𝑓 − 𝐿 �𝐺��𝑙(𝑘)��, with 𝑢(𝑘) = 𝐺��𝑙(𝑘)�;        

(1.4.12) 

for injective 𝐺�, (1.4.12) turns into 

𝑢(𝑘+1) ∶= 𝐺�[�𝐿� − 𝐿�𝑢(𝑘) + 𝑓].    (1.4.13) 

Usual starting values for these iterations are 𝑢(0) = 𝐺�(𝑓) and 𝑙(0) =f. 

 

1.5 Objectives 

The main objectives of this thesis are as follows: 
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1) Develop a general framework of the DCM for nonlinear problems. 

2) Examine an application of the general framework for aeroacoustic problems. 

3) Build a suitable and efficient coupling procedure, in order to incorporate the 

source-extraction formulation, between a finite-volume based CFD solver and 

the Helmholtz equation solver. 

4) Examine the use of the general framework for high order schemes and its 

filtering effect in large eddy simulation. 

5) Highlight the possibility of using the defect correction concept in the 

development of new high order schemes and their robust implementation within 

an existing CFD environment. 

 

1.6 Outline of the Thesis 

The remaining part of the thesis is organized as follows. In Chapter 2, a brief overview is 

given of computational aeroacoustics.  This includes several existing techniques that are 

currently being practiced in the aeroacoustic industry. In Chapter 3, a general framework 

based on the defect correction concept is developed for continuous problems with 

aeroacoustic applications in mind. Chapter 4 examines an application of the DCM to 

aeroacoustics noise analysis.  The analysis concerns a sunroof buffeting problem and its 

related software coupling involved in the acoustic study. In Chapter 5, the defect 

correction framework is applied to high order schemes with the emphases on robust 

software development.  The framework is also extended to handle turbulence through 

filtering analysis. A summary and some suggestions of future work of this research are 

made in Chapter 6. 
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Chapter  2 SOME ASPECTS OF COMPUTATIONAL 
AEROACOUSTICS 

 

This chapter gives a brief overview of aeroacoustic and solution strategies of 

computational aeroacoustics. Shortcomings of the current techniques that are normally 

used by researchers in Computational Aeroacoustics are discussed. A brief comparison 

between Computational Aeroacoustics and conventional Computational Fluid Dynamics 

is made. Some difficulties and challenges faced in the development of Computational 

Aeroacoustics are pointed out. Current computational strategies used in Computational 

Aeroacoustics are discussed. The importance of adopting coupling methods for practical 

aeroacoustic prediction is particularly emphasized through the analysis of the 

characteristics in both the unsteady flow field and the acoustic field. 

 

2.1 Acoustics and Aeroacoustics 

Hearing is one of the most crucial means of survival in the animal world, and speech is 

one of the most distinctive characteristics of human development and culture. So it is no 

surprise that the science of acoustics spreads across so many facets of our society – music, 

medicine, architecture, industrial production, warfare and more. Art, craft, science and 

technology have provoked one another to advance the whole, as in many other fields of 

knowledge. 

The word "acoustic" is derived from the Greek word ἀκουστικός (akoustikos), 

meaning "of or for hearing, ready to hear". Acoustics is originally the study of small 

pressure waves in a medium that can be detected by the human ear, which is also 

referring to, sound. 
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The sensation of sound is produced primarily by variations in air pressure that are 

detected by the mechanical effect on the tympana (ear drums) of human auditory system. 

Motion of each tympanum relates to the physiology and psychophysics of the hearing 

process, e.g. Stevens and Davis [Stevens, Davis, 1983] and Gulick [Gulick, 1971], is not 

related to this thesis. The important point is the generation of air pressure variation due to 

fluid flows. 

In general, there are two types of sound can be distinguished: pleasant ones and 

disturbing ones. The former can be referred to as harmonic and melodious music, while 

roaring from engines could refer to the later, or the so-called noise. One kind of sound 

measurement is frequency with the unit Hz which is pronounced as "Hertz". Frequency 

measures cycles of something happening, i.e. frequency of the same thing occurring. A 

wheel goes around one time in one second is known as an Hz. If a sound wave goes up 

and down, that is one Hz. Directly translated into sound, an Hz is one vibration. Sound 

waves are mechanical waves that can cause the sensation of hearing. In fluids such as air 

and water, sound waves propagate as disturbances in the ambient pressure level. While 

this disturbance is usually small, it is still noticeable to the human ear. The smallest 

sound that a person can hear is nine orders of magnitude smaller than the ambient 

pressure. The loudness of these disturbances is called the sound pressure level, and is 

measured on a logarithmic scale in decibels (dB). These waves are produced by bodies 

vibrating at frequencies lying between the range of 12Hz and 20,000Hz, perceived by the 

human ear. This is known as the audible range of frequency. In terms of wavelength, this 

range extends from about 17m to 1.7cm. Mechanical waves of frequency lesser than 

12Hz or greater than 20,000Hz are inaudible and are called infrasonic and ultrasonic, 

respectively. The seismic waves are infrasonic waves. Bats, dolphins and submarines 

make use of ultrasonic to find their way in the dark. The word acoustic refers to both the 

audible range and infrasonic/ultrasonic, i.e. the entire frequency range without limit. In 

addition to frequency, the study of sound is conventionally divided, according to the 

propagation medium, into aeroacoustics, solid acoustics and underwater acoustics. In this 

thesis, the formation and the propagation of sound in fluids, particularly in the air, are 

considered. 

Aeroacoustics, also referred as the science of aerodynamic sound, deals with the type 

of sound generated by oscillating vortex structures or pressure fluctuations in the airflow, 

as well as with the propagation of the resulting acoustic waves through non-uniformly 
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moving medium. In other words, aeroacoustics is the scientific study of sound generation 

created directly by the turbulent fluid motion or by aerodynamic forces interacting with 

surfaces. A practical aeroacoustic analysis relies upon the so-called Acoustic Analogy, 

where the governing equitation of motion of the fluid are coerced into a form reminiscent 

of the wave equation of “classical” (i.e. linear) acoustics. The objectives of aeroacoustics 

are to understand the physics of aerodynamic sound generation, to develop effective and 

accurate prediction and analysis method, and ultimately, to reduce the noise level which 

emitted from jet engine or by any other unit with high-unsteady flow. 

Aeroacoustics had long been a part of aerodynamics and had not become an 

independent field of research until the early fifties of the twentieth century this scientific 

discipline was initiated by Lighthill [Lighthill, 1952]. He was stimulated by anticipating 

large-scale commercial jet air travel to formulate his successful theory of jet noise which 

has stood the tests of time and of far-reaching extension. Flow noise has subsequently 

become a matter of serious military concern in the operation and detection of ships and 

submarines, and the aeronautical and naval applications of flow-noise theory between 

them cover a wide range of interesting phenomena. With proper manipulation of the 

Euler equations, he derived a wave equation based on pressure as the fluctuating variable, 

and the flow variables contributing to the source of fluctuation. The resulting wave 

equation can then be integrated with the help of Green’s Function [Green, 1828], or can 

be integrated numerically. Thus, this equation can represent the sound propagation from 

a source in an ambient condition. The important work of Lighthill is now widely 

considered as the birth of aeroacoustics as an independent field of research. With the 

success of the acoustic analogy, many improvements were made on the derivation of the 

wave equation. From 1950s to mid- 1980s, most works are based on a very small number 

of well-known theoretical approaches, which are modified, simplified, and adapted to the 

particular flow conditions (some of the most popular versions of Lighthill’s acoustic 

analogy include the Ffowcs-Williams and Hawkings equation [Ffowcs–William, 

Hawkings, 1969], Lilley’s equations [Lilley, 1974], as well as diverse forms of 

Kirchhoff’s theorem , e.g., Pilon and Lirintzis, [Pilon, Lirintzis, 1998]).  

It is well-known to all that the reduction of the aerodynamic noise is very important 

for civil aeroplanes. The flow-induced noise is also one of the principal concerns for 

military aircrafts. For high-speed fighter aircrafts, the vibration of structural loads, which 

partly results from the flow-induced aeroacoustic environment, on the vehicle and on 
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weapons that may be in the vicinity of the aircraft, should be taken into account. The 

several dB reduction of sound pressure level could gain an obvious increase of the 

fatigue life of a particular vehicle. 

In order to be able to compete with air traffic on short distance, high speed trains 

have to become faster, and the need to reduce the aerodynamic noise is true for future 

high speed trains. With the era of widespread supersonic flight and the proliferation of 

general aviation aircraft on future horizons, the noise generated by aircraft is of great 

concern for communities near airports, for passengers in the aircraft’s cabin, and for the 

structural integrity of the airframe. In addition, there are a number of situations that 

desire lower noise including underwater vehicles, wind turbines, and helicopter rotors. 

 

2.2 Computational Aeroacoustics 

There are three distinct streams in the study of aeroacoustics: analytical methods, 

experimental methods and numerical methods. 

Before the development of large memory and high-speed computers, the study of 

aeroacoustic problems was mainly based on the first two methods mentioned above, or 

empirical approaches combined with both theoretical methods and experimental methods. 

With rapid advancement in computational power and significant strides in numerical 

algorithm development, many problems in scientific and engineering fields have been 

studied using the computer as a tool. Consequently, many new branches of research have 

been generated, such as, computational mathematics, computational physics, 

computational chemistry, and so on. Similarly, the dramatically increasing in numerical 

investigations for aeroacoustic problems led to a research field, Computational 

Aeroacoustics (CAA), which deals with the direct calculation of acoustic field generated 

by flow and of the interaction with flow. Probably the term Computational Aeroacoustics 

entered the field with a publication of Hardin and Lamkin [Hardin, Lamkin, 1984], who 

claimed, that “… the field of computational fluid mechanics has been advancing rapidly 

in the past few years and now offers the hope that "computational aeroacoustics," where 

noise is computed directly from a first principles determination of continuous velocity 

and vorticity fields, might be possible, …” 
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There are many challenges for CAA due to the fact that the physics behind the 

unsteadiness that generates aerodynamic sound is very complicated. For instance, energy 

that is radiated as noise is typically only a small fraction of the total energy near the 

acoustic source. This is part of the scale disparity between acoustic and hydrodynamic 

fluctuations. Because there is a factor of about 106 between the acoustic pressure at the 

threshold of audibility and the limit of intolerable overload for the human ear, and 

because within that range subjective response is more logarithmic than linear, and some 

research indicate that it is even more complicated, e.g., Gulick [Gulick, 1971] and 

Rossing [Rossing, 1982]. Therefore, it is convenient to do something similar for acoustic 

pressures. Therefore the sound pressure level (SPL or pL ) for an acoustic pressure p can 

be defined as ( )refrmsp ppL ′= 10log20  with units of decibels (dB). The reference pressure 

61020 −×=refp Pa, (20µ Pa), is approximately the threshold of human hearing in its most 

sensitive range from 1 to 3 kHz, and rmsp′  is the root mean square of the acoustic pressure 

perturbations. The ratio of pressure amplitudes between a quiet conversation, 60dB, and a 

rock ‘n’ roll concert, 120dB, is 1000 [ ( )refonconversati pp10log*2060 =  and 

( )refconcert pp10log*20120 = , therefore onconversaticoncert pp *3^10= ]. In addition, atmospheric 

pressure is 3500 times greater than the pressure amplitude of a 120dB signal. At 120dB, 

one starts feeling discomfort and experiences a ringing in the ears. Although this level is 

very loud to human ears, it is so small that a typical computational fluid dynamics (CFD) 

simulation very easily loses the sound waves among the large hydrodynamic fluctuations. 

Simultaneously resolving the hydrodynamic fluctuations and the wide range of acoustic 

signals is very difficult. 

From the perspective of physics, there are two fundamental problems in CAA that 

can be classified. One is to model numerically acoustic sources in the unsteady flows as 

accurate as possible, so one can determine the acoustic signal at any point in the flow; the 

other is to compute accurately the propagation/radiation of the resulting acoustic waves. 

Although both the flow field and the accompanying acoustic field are governed by the 

same equations of motion of fluids --- the unsteady compressible Navier-Stokes 

equations, one must recognize that acoustic perturbations are several orders of magnitude 

smaller than the mean quantities of flow. Understanding the source of the noise itself, its 

manifestation in the near-field and propagation to the far-field are all critical in the 

development of future noise reduction technologies. 
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2.3 Solution strategies in CAA 

Aeroacoustic problems are by nature very different from standard aerodynamics and fluid 

mechanics problems. These differences pose a number of major challenges to CAA. A 

few of the important computational challenges are listed below: 

(a) Aeroacoustics problems, by definition, are time dependent, whereas 

aerodynamics and fluid mechanics problems may be time independent or 

involve only low frequency unsteadiness. 

(b) Aeroacoustics problems typically involve frequency range that spreads over 

a wide bandwidth. Numerical resolution of the high frequency waves with 

extremely short wavelengths becomes a formidable obstacle to accurate 

numerical simulation. 

(c) Acoustic waves usually have small amplitudes. They are very small 

compared to the mean flow. Often, the sound intensity is five to six orders 

smaller [Tam, 2001]. To compute sound waves accurately, a numerical 

scheme must have extremely low numerical noise. 

(d) In most aeroacoustics problems, interest is in the sound waves radiating to 

the far field. This requires a solution that is uniformly valid from the source 

region all the way to the measurement point at many acoustic wavelengths 

away. Because of the long propagation distance, CAA schemes must have 

minimal numerical dispersion and dissipation. Also, it should propagate the 

waves at the correct wave speeds and is isotropic irrespective of the 

orientation of the computation mesh. 

(e) In general, flow disturbances in aerodynamics or fluid mechanics problems 

tend to decay very fast away from a body or their source of generation. 

Acoustic waves, on the other hand, decay very slowly and actually reach the 

boundaries of a finite computation domain. To avoid the reflection of 

outgoing sound waves back into the computation domain, and thus 

contaminates the numerical solution, radiation boundary conditions must be 

imposed at the artificial exterior boundaries to assist the waves to exit 
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smoothly. For standard CFD problems, such boundary conditions are usually 

not required. 

(f) Aeroacoustics problems are archetypical examples of multiple-scales 

problems. The length scale of the acoustic source is usually very different 

from the acoustic wavelength. CAA methods must be able to deal with 

problems with greatly different length scales in different parts of the 

computational domain. 

It must be acknowledged that CFD has been very successful in solving fluid and 

aerodynamics problems. CFD methods are generally designed for low frequency of 

unsteadiness or steady state problems. Because of the tremendous success of CFD, it is 

tempting to use these methods to solve aeroacoustics problems as well. In the past, there 

have been a number of attempts to do just that. However, the results have proven to be 

quite discouraging. For example, Hsi and Perie [Hsi, Perie, 1977] tried to use a 

commercial CFD code RADIOSS to solve the sound scattering problems of the Second 

CAA Workshop on Benchmark Problems. The results were disastrous. The computed 

results were highly dispersive and differed significantly from the exact solutions. 

As discussed above, it is clear that the nature of aeroacoustics problems is 

substantially different from those of traditional fluid dynamics and aerodynamics 

problems. To be able to compute or simulate aeroacoustics problems accurately and 

efficiently, standard CFD schemes, designed for applications to fluid problems, are 

generally not adequate. For this reason there has been an independent development of 

CAA and various computational methods have been developed. 

From a computational viewpoint, the current research community and industry 

practice have two solution strategies, i.e. the direct sound computation and coupling 

computation of sound. 

 

2.3.1 Direct Sound Computation 

One of the prediction strategies in CAA is direct computation of sound. The unsteady 

flow of an aerodynamic problem and the sound generated by such unsteadiness can be 

computed together using the unsteady compressible Navier-Stokes equation, i.e. the 

unsteady flow and its sound are regarded as correlated parts of the same flow field. Such 
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direct computations of aerodynamic sound generation allow a detailed understanding of 

practically any flow quantity of interest. Modelling the mechanism of sound generation 

can be explored at a fundamental level. There are mainly three different approaches 

which are normally used by researchers in CAA. By placing them in the decreasing order 

in terms of accuracy as well as computational costs, they are direct numerical simulation 

(DNS), Large Eddy Simulation (LES) and Reynolds-averaged-Navier-Stokes equations 

(RANS). 

 

(A) Direct Numerical Simulation 

There are two principal ways of obtaining theoretical results regarding turbulence, 

namely turbulence theory and solution of the Navier-Stokes Equations. In 1972, Orszag 

and Patterson were the first to introduce the name of Direct Numerical Simulation (DNS) 

[Orszag, Patterson, 1972]. DNS is to solve the primitive variable of the Navier-Stokes 

Equations numerically without using any turbulence model. This means that the whole 

range of spatial and temporal scales of the turbulence must be resolved. All the spatial 

scales of the turbulence must be resolved in the computational mesh, from the smallest 

dissipative scales, η  (Kolmogorov microscales), up to the integral scale, L , with the 

motions containing most of the kinetic energy. The Kolmogorov scale, η , at which 

viscosity dominates and the turbulent kinetic energy is dissipated into heat, is given by 

( ) 4/13 /ενη = , where ν  is the kinematic viscosity and ε  is the rate of kinetic energy 

dissipation. On the other hand, the integral scale depends usually on the spatial scale of 

the boundary conditions. To satisfy these resolution requirements, the number of points 

N  along a given mesh direction with mesh size h , must be LNh > , so that the integral 

scale is contained within the computational domain, and also η≤h , so that the 

Kolmogorov scale can be resolved. Since Lu /3′≈ε , where u′  is the root mean square of 

the velocity, the previous relations imply that a three-dimensional DNS requires a 

number of mesh points 3N  satisfying 25.24/93 eReRN =≥ , where eR  is the turbulent 

Reynolds number: 
ν
LueR
′

= . Therefore the memory storage requirement in a DNS 

grows very fast with the Reynolds number. In addition, given the very large memory 

requirement, the integration of the solution along temporal axis must be done by an 

explicit method. This means that in order to be accurate, the integration must be done 
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with a time step, t∆ , small enough such that a fluid particle moves only a fraction of the 

mesh spacing h  in each step. Typically the condition 1<∆′
=

h
tuC , where C  is the 

Courant number, must be satisfied. The total time interval simulated is generally 

proportional to the turbulence time scale τ  given by 
u
L
′

=τ . Combining these relations, 

and the fact that h  must be of the order of η , the number of time-integration steps must 

be proportional to ( )ηCL / . On the other hand, from the definitions for eR , η  and L  as 

previously stated, it follows that 4/3eRL
≈

η
, and consequently, the number of time steps 

grows also as a power law of the Reynolds number. As the number of floating-point 

operations required to complete the simulation is proportional to the number of mesh 

points and the number of time steps, therefore the number of operations grows with eR .  

Although DNS is famously known as the most accurate and also the most 

straightforward numerical method in direct sound computation, the computational cost of 

DNS is very high, even at low Reynolds numbers. Due to the use of highly accurate, 

high-order schemes to limit dispersion and dissipation errors, these schemes tend to have 

little flexibility in handling complex geometries and general boundary conditions. In 

addition, the calculation has to discretize the equations on extremely fine grids in order to 

properly resolve all scales of an unsteady flow. Furthermore, the size of the smallest 

scales decreases will cause the increase in Reynolds number. It can be easily shown that 

it will be impossible to apply DNS for practical flow and aeroacoustic problems (high 

Reynolds number) in the foreseeable future [Launder et al, 1975]. 

 

(B) Large Eddy Simulation 

Large Eddy Simulation is a numerical technique used to solve the partial differential 

equations governing turbulent fluid flow. It was formulated in the late 1960s and became 

popular in later years. It was first used by Joseph Smagorinsky to simulate atmospheric 

air currents, and its primary use at that time was for meteorological calculations and 

predictions. During the 1980s and 1990s LES became widely used in the field of 

engineering. LES requires less computational effort than DNS and yet it is able to deliver 
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a high level of detail. LES can predict instantaneous flow characteristics and resolve 

some larger turbulent flow structures by solving the turbulence model. 

The direct numerical solution of the Navier-Stokes equations is usually intractable in 

turbulent flow, due to the large range of scales of motion. To reduce this range, the 

Navier-Stokes equations are filtered leading to the LES equations. The solution to the 

LES equations is now defined in a filtered velocity field, with the smaller scales of 

motion being filtered out of the original direct solution field. With the smaller scales 

eliminated from direct solution, a wider grid spacing may be used, thus lowering the 

computational costs. However, the effect of the smaller scales on the large scales has 

been ignored using this approach. Large eddies of the flow are dependent on the flow 

geometry, while smaller eddies are self-similar and have a universal character. For this 

reason, the effect of the smaller and more universal eddies on the larger ones may be 

modelled. Thus, in LES the large scale motions of the flow are calculated, while the 

effect of the smaller universal scales (the sub-grid scales) are modelled using a sub-grid 

scale (SGS) model. In practical implementations, one is required to solve the filtered 

Navier-Stokes equations with an additional sub-grid scale stress term [Nieuwstadt et al, 

1993].  

Consider the Navier-Stokes equations for an incompressible fluid, i.e. 
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Let an over bar denotes filtering. The momentum equation in (2.2) after filtering becomes 
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Assuming that filtering and differentiation commute [Vasilyev et al, 1998], the above 

equation becomes 
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(2.4). Hence the resulting set of equations is the LES equations 

(2.5) 

where u1 is the velocity field, p is the pressme, p is the density, and v is the viscosity. 

The r u te1m represents the SGS su·ess that must be modelled. 

Modelling the SGS su·ess te1m r u is one of the central problems in LES. The most 

commonly used SGS models are the Smagorinsky model and its variants. They 

compensate for the unresolved turbulent scales through the addition of an eddy viscosity 

into the goveming equations. The basic f01mulation of the Smagorinsky model is 

(2.6) 

where 

(2.7) 

is an enu·y of the su·ain rate tensor and the eddy viscosity v r is calculated as 

(2.8) 

where !::.g is the grid size and Cs is a constant. Many techniques have been developed to 

calculate Cs . Some models use a static value for Cs, often calculated from empirical 

experiments of similar flows to those being modelled. Other models dynamically 

calculate Cs as a function of space and time [Moeng, Sullivan, 2002]. 

Although the LES results in the literatme are encomaging and show the potential 

promise of LES application to aeroacoustic prediction, the method has its own 

weaknesses. One of the weaknesses, which might affect the application of LES to smmd 

computations, is the effect of the small scales on the acoustic somces. For example, none 

of the LES studies on jet noise done so far has predicted the high-frequency noise 

associated with the unresolved scales. The problem of evaluating the smmd generation of 

28 
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the unresolved, subgrid-scale motions could be alleviated or overcome by developing 

new subgrid-scale models.  

It has also been noted that the highest Reynolds number achieved in the LES 

simulations, which is much higher than that attained by current DNS calculations, so far 

is still below those practical Reynolds number of interest ( ( )610Re O=  to ( )910O ) 

[Breuer, 2000]. Simulations of aeroacoustic problems at higher Reynolds number (for 

example, jet noise) would be very useful in analysing the broadband noise spectrum at 

such high Reynolds numbers. 

Overall, LES requires less computational effort than DNS. Although in LES the 

effect of small (subgrid) scale eddies on the large (resolved) scale motion is modelled, 

which drastically reduces the computational cost compared with DNS, the acoustic 

power may have been underestimated if the contribution of these unresolved (small) 

scales is simply neglected. While the contribution of the small scales to the momentum 

transport may be usually small, their contribution to the sound generation may be 

significant. In addition, accurate computation in time and space, fine mesh (or high-order 

schemes) and small time-steps are required in calculating the motion of the large scales. 

Since the turbulent motions are intrinsically three-dimensional, even flows that are two-

dimensional or one-dimensional in the mean flow must be computed using a three-

dimensional approach. Direct sound computation based on LES for application to 

engineering flows still remains expensive. 

 

(C) Reynolds–Averaged Navier–Stokes Equations 

Apart from the direct computation of aerodynamic sound based on DNS and LES, 

several direct computations of sound from the unsteady solution of Reynolds-averaged-

Navier-Stokes equations (RANS) were presented by some researchers (see e.g., [Launder, 

Spalding, 1972] and [Launder et al, 1975]). RANS equations are time-averaged equations 

of motion for fluid flow. They are primarily used while dealing with turbulent flows. 

These equations can be used with approximations based on knowledge of the properties 

of flow turbulence to give approximate averaged solutions to the Navier-Stokes equations. 

The basic tool required for the derivation of the RANS equations from the 

instantaneous Navier–Stokes equations is the Reynolds decomposition. Reynolds 
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decomposition is a mathematical technique to separate the average and fluctuating parts 

of a quantity, such as a flow variable (e.g. velocity u ) into the mean (time-average) 

component ( u ) and the fluctuating component ( u~ ). Previous work by Djambazov 

[Djambazov et al, 1998] and Wang [Wang et al, 2004] also employed such 

decomposition technique. In perturbation theory the similar decomposition is also 

employed. The defect correction framework described in Chapter 3 also rely on such 

decomposition. Specifically the variable u  is decomposed as 

( ) ( ) ( )tXuXutXu ,~, +=     (2.9) 

where ( )zyxX ,,=  is the position vector. 

For the current study there are three velocity components and the pressure variable, 

i.e.  iii uuu ~+= , with 𝑖 = 1,2,3, and ppp ~+= . Substituting them into the time averaged 

version of  Equations (2.1) and (2.2) and taking into account of external and internal 

viscous friction/forces in the mean flow and the perturbations 𝑓 leads to 
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The momentum equation can also be written as, 
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On further manipulations this yields, 
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The time derivative, 
t
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∂
∂ρ , can be eliminated since iu is a time average component, 

which is time independent, hence, 
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Reynolds-averaged-Navier-Stokes equations (RANS) were examined by some 

researchers in several direct computations of sound. Baysal, Yen and Fouladi [Baysal et 

al, 1992], Shih, Hamed and Yeuan [Shih et al, 1994] have noted that direct simulations of 

acoustic field based on RANS cannot usually obtain reasonable acoustic results due to 

their excessive turbulent dissipation. Under the circumstances, researchers in 

computational aeroacoustics field began to seek for more practical solution strategy for 

the last two decades. The development of coupling methods for aeroacoustic problems 

has been an active area of research in CAA for many years. 

 

2.3.2 Coupling Techniques in the Computation of Sound 

The fundamental basis for the use of coupling methods comes from the observation of 

characteristics of the flow field and the accompanying acoustic field. Due to the distinct 

characteristics (an enormous range of length scales and time scales are involved) in both 

the unsteady flow field and the resulting acoustic field, domain decomposition technique 

is generally adopted. In CAA, computational domain (domain of interest) is often divided 

into two parts; one is the ‘near field’ where main acoustic sources (sound generation) are 

located, where detailed flow structures can be resolved by a CFD technique (DNS, LES 

or RANS); the other one is the ‘far field’ in which concerns are the propagation/radiation 

of the resulting acoustic waves, which is then calculated via an acoustic analogy or by 

solving a set of acoustic perturbation equations. The most important advantage in such a 

fluid-acoustic-coupling procedure is the aerodynamic calculation and the calculation of 

sound propagation/radiation is separated so that the most appropriate approach may be 

employed at each part. 

There are currently two types of coupling methods under the framework of the fluid-

acoustic-coupling procedure. In the first type the first step is to solve the full unsteady 

incompressible or compressible flow equations for the near-field of the unsteady flow by 

means of LES or unsteady RANS, after computing the sources of the acoustic field an 

acoustic integral approach, where various versions of acoustic analogies, is applied to 

solve the sound propagation. These include Lighthill’s wave equation [Lighthill, 1952], 

the Ffowcs Williams-Hawkings (FW-H) equation [Ffowcs–William, Hawkings, 1969], 
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and Lilley’s equations [Lilley, 1974]. An acoustic analogy may be derived by re-

arranging the governing equations of the fluid motion such that the left-hand side consists 

of a wave operator in an undisturbed medium and the right-hand side is comprised of 

acoustic source terms. The solution of the equation can be written as the convolution of 

the source terms with the Green function for the wave operator. Hence, with the strengths 

of the source terms obtained in the regions where they are significant, one can determine 

the acoustic signal at any point in the flow, including locations at long distances from the 

sources. The acoustic analogy is the most developed method and widely used in the 

aircraft industry. 

Take Lighthill’s acoustic analogy for example. Lighthill essentially recast the exact 

equations of fluid motion (Navier Stokes equations and continuity equation) in the form 

of an inhomogeneous wave equation suitable to be applied in the far-field, therefore 

making it an acoustic analogy with fluid mechanics. The governing equation for the 

conservative form of the continuity (Equation 2.15) and momentum equation (Equation 

2.16) for a compressible fluid based on a Cartesian coordinate system, ignoring body 

forces, may be described as 
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∂
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where ijijij pp τδ −≡ . ρ  is the density of the fluid, ijδ  is the Kronecker delta ( ijδ  = 1 if 

i = j and ijδ  = 0 otherwise), iu  and ju  are the velocity components, ijp  is the stress 

tensor and p  is the static pressure. If external sources are not considered, the famous 

Lighthill’s wave equation can be written as 
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22
02

2
~~
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,
    (2.17) 

where ρ~  is density perturbation (defined as the deviation from the quiescent reference 

density), 0c  is the speed of sound in the fluid at rest that is defined as 𝑐0 = 𝛾𝑝
𝜌

, where 

𝛾 = 1.4 is the ratio of specific heats in a general airflow [Wood, 1946]. The Lighthill 

stress tensor, ijT  is defined as 
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( ) ijijjiij cpuuT δρτρ ~~ 2
0−+−=

,
    (2.18) 

and p~  is pressure perturbation, ijτ  is the viscous stress term. Each of these acoustic 

source terms may play a significant role in the generation of noise depending upon flow 

conditions considered. It is generally accepted however, the term ijτ  on noise generation 

is in orders of magnitude less than the other terms and can be consequently neglected in 

most situations.  

Note that perturbations ( p~,~ρ ) are defined as the deviations between the total flow 

variables ( p,ρ ) and the quiescent reference state ( 00 , pρ ) during the derivation of 

Equation 2.17, i.e. 

0
~ ppp −= ,   (2.19) 

0
~ ρρρ −= .   (2.20) 

Another alternative is the Kirchhoff-surface method [Kirchhoff, 1883], in which the 

acoustic sources are determined correspondingly from the unsteady solutions in the 

acoustic source field. In addition, the boundary element method (BEM) can also be 

utilized for the prediction of far-field sound propagation/radiation in Manoha, Elias, 

Troff and Sagaut [Manoha et al, 1999]. For such coupling method, the most important 

advantage is that the calculation of acoustic field is computationally economical since 

certain integral formulation is used. However, the main drawback is that the details of the 

acoustic field cannot be obtained. 

In the second type of coupling method, which has already received much attention 

from CAA community in the past decade, the first step in the coupling is similar to the 

first step of the coupling procedure described above. CFD techniques such as DNS, LES 

and unsteady RANS simulations as well as other appropriate methods can be used in 

solving the unsteady aerodynamic near-field, which contains the sound sources. For the 

second part of this coupling procedure, instead of using an acoustic integral approach, it 

makes use of the calculated sources for the solution of the acoustic field by solving a set 

of acoustic perturbation equations (APE) [Ewert, Schroder, 2003] associated with source 

terms through certain numerical methods. A typical example of acoustic perturbation 

equations is the linearized Euler equations (LEE) with acoustic source terms which from 
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the solution of RANS in the near field to predict noise radiated from axisymmetric 

supersonic jets has been used by Viswanathan and Sankar [Viswanathan, Sankar, 1995]. 

Comparing to the first type of coupling method associated with acoustic analogies, the 

second type of coupling method obtains more details of the acoustic field since the 

acoustic wave propagation in the near field is done by means of solving the APE, the 

same terms of which are derived from the unsteady flow field. 

A coupling method, in which the near-field of the unsteady flow may be simulated 

by a fine-mesh-small-timestep-LES-alike numerical method applied in two-dimension, 

and the acoustic propagation in a medium at rest where flow motions may be neglected, 

may be resolved by Helmholtz equation to predict buffeting noise inside a car 

compartment due to aerodynamic flow over an open sunroof is mentioned in detail in the 

following section. 

 

2.4 Closure 

A brief overview is given of aeroacoustic and solution strategies of computational 

aeroacoustics. One of the objectives of this thesis is to build an efficient coupling 

procedure in order to incorporate the source-extraction formulation for a general 

aeroacoustic problem. Some of the recent industrial practices and researches have also 

been reviewed in later Chapter 4 in order to provide an up to date overview on how 

others have been dealing with the similar problem. In the next chapter, it is intended to 

rewrite some of the solution strategies of computational aeroacoustic under the 

framework of defect correction and to discuss the advantage of doing so. 

  



35 

 

 

 

 

 

 

Chapter  3 THE DEFECT CORRECTION 
FRAMEWORK FOR PROBLEMS AT THE 

CONTINUUM LEVEL 
 

This chapter examines the concept of defect correction in details. The main aim of this 

chapter is to build a framework of the DCM for problems that exhibit multiple scales at 

the continuum level. This work typically examines problems that have two different 

scales. However the generalisation to more scales should not be a problem. A brief 

discussion towards the end of this chapter is given of such generalisation.   

 

3.1 DCM for Navier-Stokes Equations without Multi-Scales 

In the numerical solution of higher Reynolds number flow problems one of the most 

commonly reported results is that “the method failed”. Often “failure” means that the 

iterative method used to solve the linear and/or nonlinear system for the approximate 

solution at the new time level failed to converge within the time constraints of the 

problem or the resulting approximation had poor solution quality. The first type of failure 

can usually be overcome easily by using an upwind or artificial viscosity discretization at 

the expense of decreasing dramatically the accuracy of the method and possibly even 

altering the predictions of the simulation at the qualitative level, therefore increasing the 

likelihood of the second type of failure. 

One interesting approach to attaining (by a convergent method) an approximate 

solution of desired accuracy is the DCM. Briefly, let a 𝑘𝑡ℎ order accurate discretization 

of the Navier-Stokes equation be written as 

𝑁ℎ(𝑢ℎ) = 𝑓,   (3.1.1) 
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where ℎ is the discretisation parameter such as the spatial grid size. 

Equation (3.1.1) is solved by means of adding an artificial viscosity approximation, 

i.e. 

−𝛼ℎ∆ℎ𝑢ℎ
(1) + 𝑁ℎ�𝑢ℎ

(1)� = 𝑓0.    (3.1.2) 

Hence compute the defect leads to 

𝑟 ∶= 𝑓 − 𝑁ℎ�𝑢ℎ
(𝑘)�; 𝑘 = 1,2,3, …   (3.1.3) 

Construct simplified problem/defect correction equation as below 

−𝛼ℎ∆ℎ𝑢ℎ
(𝑘) + 𝑁ℎ�𝑢ℎ

(𝑘)� = 𝑓 − 𝛼ℎ∆ℎ𝑢ℎ
(𝑘−1),   𝑓𝑜𝑟 𝑘 = 2,3, … , 𝐿 (3.1.4) 

where 𝑢ℎ
(𝑘) contains variable involved in the Navier-Stokes equations. 

It was demonstrated in Layton, Lee, Peterson [Layton et al, 2002] that 

�𝑢𝑁 − 𝑢ℎ
(𝑘)�

𝐸
= 𝑂 �ℎ𝑘 + ℎ�𝑢𝑁 − 𝑢ℎ

(𝐿−1)�
𝐸
�    

= 𝑂(ℎ𝑘 + ℎ𝐿).       (3.1.5) 

Hence after 𝐿 = 𝑘 steps, 

�𝑢𝑁 − 𝑢ℎ
(𝑘)�

𝐸
= 𝑂(ℎ𝑘).      (3.1.6) 

Here 𝑢𝑁 denotes the solution of the Navier-Stokes equations.. 

For problems with high Reynolds number turbulence is expected. In these cases the 

DCM needs to be combined with appropriate turbulence models. These models tend to 

introduce extra nonlinearities (due to the closure of the model). It might be possible to 

incorporate them into the residual on the right-hand side, as was done in the quasistatic 

case by Ervin, Layton, Maubach [Ervin et al, 2000].  

There has been an extensive study and development of this approach for equilibrium 

flow problems, see e.g. Hemker [Hemker et al, 1997] , Koren [Koren, 1991], Heinrichs 

[Heinrichs, 1996], Layton, Lee, Peterson [Layton et al, 2002], Ervin and Lee [Ervin, Lee, 

2006]. 

There have also been some recent studies that deals with high Reynolds number 

problem based on defect corrections method, see [Liu, Hou, 2010] and [Qin et al, 2011]. 
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For many years, it has been widely believed that (3.1.4) can be directly imported into 

implicit time discretization of flow problems in the obvious way: discretize in time. 

Unfortunately, this natural idea did not seem to be even stable (see [Labovschii, 2009]). 

On the other hand, there is a parallel development of DCM without any use of special 

stabilisation (such as −𝛼ℎ∆ℎ  in (3.1.4)) for initial value problems with the aim to 

increase the accuracy of the time discretization. This work contains no reports of 

instabilities: see, e.g., Heywood, Rannacher [Heywood, Rannacher, 1990], Hemker, 

Shishkin, Shishkina [Hemker et al, 2002], Lallemand, Koren [Lallemand, Koren, 1993], 

Minion [Minion, 2004]. With this parallel development and after more than thirty years 

of studies of (3.1.4), there has yet to be a successful extension of (3.1.4) to time 

dependent flow problems. 

 

3.2 DCM for Navier-Stokes Equation with Two Scales 

Most defect corrections are used in conjunction with discretisation methods and two-

level multigrid methods [Böhmer, Setter, 1984].  Recall that sound waves – manifested 

as pressure fluctuations – are typically several orders of magnitude smaller than the 

pressure variations in the flow field that account for flow acceleration. Furthermore, they 

propagate at the speed of sound in the medium, not as a transported fluid quantity. A 

decomposition of variables was first introduced by Djambazov, Lai, Pericleous 

[Djambazov et al, 1996] and has been further examined in [Djambazov et al, 1998] to 

include three types of components. These components include (1) the mean flow, (2) 

flow perturbations or aerodynamic sources of sound, and (3) the acoustic perturbation. 

The accurate computation of (1) and (2) has been demonstrated in Djambazov, Lai, 

Pericleous [Djambazov et al, 1998]. Mathematically, the flow variable 𝑈 may be written 

as 𝑈� + 𝑈� where 𝑈� denotes the mean flow and part of aerodynamic sources of sound and 

𝑈�  denotes the remaining part of the aerodynamic sources of sound and the acoustic 

perturbation. 

While flow perturbation or aerodynamic sources of sound may be easier to recover, 

it is not true for the acoustic perturbation because of its comparatively small magnitude. 

In fact, the solutions of the Reynolds averaged Navier-Stokes equations reveal only a 

truncated part of the full physical quantities. The basic principle of the defect correction 

can be applied to recover the propagating acoustic perturbation. The method relies on the 
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use of lower order partial differential equation defined on the same computational 

domain where a residue exists such that the acoustic perturbation may be retrieved 

through a properly defined coarse mesh. 

The aim here is to solve the non-linear equation 

𝐿(𝑈) ≡ 𝐿�𝑈� + 𝑈�� = 𝑓,   (3.2.1) 

where 𝐿 is a non-linear operator depending on 𝑈 ≡ 𝑈� + 𝑈�. It is noted that 𝑈� ≪ 𝑈�. In the 

case of sound generated by the motion of fluid, it is natural to imagine 𝐿 as the Navier-

Stokes operator. For a 2-D problem, 

𝑈� = �
𝜌̅
𝑢�
𝑣̅
�           𝑈� = �

𝜌�
𝑢�
𝑣�
� 

where 𝜌 is the density of fluid and 𝑢 and 𝑣 are the velocity components along the two 

spatial axes. The 2-D Navier-Stokes problem 𝐿(𝑈) = 𝑓 is written as 

𝜕𝜌
𝜕𝑡

+ 𝜕𝜌𝑢
𝜕𝑥

+ 𝜕𝜌𝑣
𝜕𝑦

= 0   (3.2.2) 

and 

�

𝜕𝑢
𝜕𝑡

+ 𝑢 𝜕𝑢
𝜕𝑥

+ 𝑣 𝜕𝑢
𝜕𝑦

+ 1
𝜌
𝜕𝑃
𝜕𝑥
− 𝑓1

𝜌
= 0

𝜕𝑣
𝜕𝑡

+ 𝑢 𝜕𝑣
𝜕𝑥

+ 𝑣 𝜕𝑣
𝜕𝑦

+ 1
𝜌
𝜕𝑃
𝜕𝑦
− 𝑓2

𝜌
= 0

,   (3.2.3) 

where 𝑃 is the pressure and 𝑓𝑖 is the external and internal viscous friction in the mean 

flow and the perturbations along 𝑖-th axis. 

Suppose (3.2.1) may be split and re-written as 

𝐿�𝑈� + 𝑈�� ≡ 𝐿(𝑈�) + 𝐸{𝑢�}𝑢� + 𝐾[𝑢� ,𝑢�]   (3.2.4) 

where 𝐸{𝑢�} is an operator depending on the knowledge of 𝑢� and 𝐾[𝑢� ,𝑢�] is a functional 

depending on the knowledge of both 𝑢� and 𝑢� . Following the concept of defect correction, 

𝑢� may be considered as an approximate solution to (3.2.1). Hence one can evaluate the 

residue of (3.2.1) as  

𝑅 ≡ 𝑓 − 𝐿(𝑈�),   (3.2.5) 

which may then be substituted into (3.2.4) to give 

𝐸{𝑢�}𝑢� + 𝐾[𝑢� ,𝑢�] = 𝑅.    (3.2.6) 
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In many cases, 𝐾[𝑢� ,𝑢�]  is small and can then be neglected. In those cases, the 

problem in (3.2.6) is a linear problem and may be solved more easily to obtain the 

acoustics fluctuation 𝑢� . A non-linear iterative solver is required in order to obtain 𝑢 for 

cases when 𝐾[𝑢� , 𝑢�] is not negligible. Finally, to obtain the approximate solution 𝑢�, one 

only needs to solve 𝐿(𝑈�) = 𝑓. 

Expanding 𝐿�𝑈� + 𝑈�� = 𝑓 for 𝐿 being the Navier-Stokes operator and re-arranging 

one obtain 

�
𝜕𝜌�
𝜕𝑡

+ 𝑢� 𝜕𝜌�
𝜕𝑥

+ 𝜌̅ 𝜕𝑢�
𝜕𝑥

+ �𝑢� 𝜕(𝜌�+𝜌�)
𝜕𝑥

+ 𝜌� 𝜕(𝑢�+𝑢�)
𝜕𝑥

� = −[𝜕𝜌�
𝜕𝑡

+ 𝑢� 𝜕𝜌�
𝜕𝑥

+ 𝜌̅ 𝜕𝑢�
𝜕𝑥

]
𝜕𝜌�
𝜕𝑡

+ 𝑣̅ 𝜕𝜌�
𝜕𝑦

+ 𝜌̅ 𝜕𝑣�
𝜕𝑦

+ �𝑣� 𝜕(𝜌�+𝜌�)
𝜕𝑦

+ 𝜌� 𝜕(𝑣�+𝑣�)
𝜕𝑦

� = −[𝜕𝜌�
𝜕𝑡

+ 𝑣̅ 𝜕𝜌�
𝜕𝑦

+ 𝜌̅ 𝜕𝑣�
𝜕𝑦

]
  (3.2.7) 

and 

⎩
⎪⎪
⎪
⎨

⎪⎪
⎪
⎧𝜕𝑢�
𝜕𝑡

+ 𝑢� 𝜕𝑣�
𝜕𝑥

+ 𝑣̅ 𝜕𝑢�
𝜕𝑦

+ 1
𝜌�
𝜕𝑃�

𝜕𝑥
− 𝑓1

𝜌�
+ �𝜌�

𝜌�
𝜕(𝑢�+𝑢�)
𝜕𝑡

+ �𝑢� + 𝜌�
𝜌�

(𝑢� + 𝑢�)� 𝜕(𝑣�+𝑣�)
𝜕𝑥

+ �𝑣� + 𝜌�
𝜌�

(𝑣̅ + 𝑣�)� 𝜕(𝑢�+𝑢�)
𝜕𝑦

�

= −[𝜕𝑢�
𝜕𝑡

+ 𝑢� 𝜕𝑣�
𝜕𝑥

+ 𝑣̅ 𝜕𝑢�
𝜕𝑦

+ 1
𝜌�
𝜕𝑃�

𝜕𝑥
− 𝑓̅1

𝜌�
]

𝜕𝑣�
𝜕𝑡

+ 𝑣̅ 𝜕𝑢�
𝜕𝑦

+ 𝑢� 𝜕𝑣�
𝜕𝑥

+ 1
𝜌�
𝜕𝑃�

𝜕𝑦
− 𝑓2

𝜌�
+ �𝜌�

𝜌�
𝜕(𝑣�+𝑣�)
𝜕𝑡

+ �𝑣� + 𝜌�
𝜌�

(𝑣̅ + 𝑣�)� 𝜕(𝑢�+𝑢�)
𝜕𝑦

+ �𝑢� + 𝜌�
𝜌�

(𝑢� + 𝑢�)� 𝜕(𝑣�+𝑣�)
𝜕𝑥

�

= −[𝜕𝑣�
𝜕𝑡

+ 𝑣̅ 𝜕𝑢�
𝜕𝑦

+ 𝑢� 𝜕𝑣�
𝜕𝑥

+ 1
𝜌�
𝜕𝑃�

𝜕𝑦
− 𝑓̅2

𝜌�
]

  (3.2.8) 

It can be seen that (3.2.8) may be written in the form of (3.2.6) where 

𝐸{𝑢�}𝑢� =

⎩
⎪⎪
⎨

⎪⎪
⎧
�

𝜕𝜌�
𝜕𝑡
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+ 𝜌̅ 𝜕𝑢�
𝜕𝑥
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𝜕𝑡
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𝜕𝑥

+ 𝑣̅ 𝜕𝑢�
𝜕𝑦

+ 1
𝜌�
𝜕𝑃�
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− 𝑓1�
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�

�

𝜕𝜌�
𝜕𝑡

+ 𝑣̅ 𝜕𝜌�
𝜕𝑦
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𝜕𝑦

𝜕𝑣�
𝜕𝑡

+ 𝑣̅ 𝜕𝑢�
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+ 𝑢� 𝜕𝑣�
𝜕𝑥

+ 1
𝜌�
𝜕𝑃�

𝜕𝑦
− 𝑓2�

𝜌�

�

,    (3.2.9) 

𝐾[𝑢� ,𝑢�] =

⎩
⎪
⎪
⎨

⎪
⎪
⎧
�

𝑢� 𝜕(𝜌�+𝜌�)
𝜕𝑥

+ 𝜌� 𝜕(𝑢�+𝑢�)
𝜕𝑥

𝜌�
𝜌�
𝜕(𝑢�+𝑢�)
𝜕𝑡

+ �𝑢� + 𝜌�
𝜌�

(𝑢� + 𝑢�)� 𝜕(𝑣�+𝑣�)
𝜕𝑥

+ �𝑣� + 𝜌�
𝜌�

(𝑣̅ + 𝑣�)� 𝜕(𝑢�+𝑢�)
𝜕𝑦
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𝑣� 𝜕(𝜌�+𝜌�)
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(𝑢� + 𝑢�)� 𝜕(𝑣�+𝑣�)
𝜕𝑥

�

 

  (3.2.10) 
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𝑅 =

⎩
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⎨

⎪⎪
⎧
�

−[𝜕𝜌�
𝜕𝑡
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+ 𝜌̅ 𝜕𝑣�

𝜕𝑦
]

−[𝜕𝑣�
𝜕𝑡

+ 𝑣̅ 𝜕𝑢�
𝜕𝑦

+ 𝑢� 𝜕𝑣�
𝜕𝑥

+ 1
𝜌�
𝜕𝑃�

𝜕𝑦
− 𝑓̅2

𝜌�
]
�

≡ 𝑓 − 𝐿(𝑈�). (3.2.11) 

The defect correction framework for a 2-scale problem in Navier-Stokes equation is 

now listed as below: 

Step 1:  

Solve 𝐿(𝑈�) = 𝑓 using a CFD package simulating LES or RANS. 

Step 2:  

Compute defect 𝑅 = 𝐿�𝑈� + 𝑈�� − 𝐿(𝑈�). 

Step 3:  

Solve the defect correction problem/simplified problem 𝐸{𝑢�}𝑢� + 𝐾[𝑢� , 𝑢�] = 𝑅. 

Step 4:  

Correct the approximation 𝑈 = 𝑈� + 𝑈�. 

From the knowledge of physics of fluids, the acoustic perturbations 𝜌�, 𝑢�  and 𝑣� are of 

very small magnitude (this is not true for their derivatives), therefore, 𝐾  may be 

considered negligible due to the reason that any feedback from the propagation waves to 

the flow can be completely ignored. Hence the equation 𝐸{𝑢�}𝑢 = 𝑅, with 𝐸 given by 

(3.2.9), which is known as the linearized Euler equation, can be solved in an easier way. 

The remaining question is to obtain the approximate solution 𝑈� to the original problem 

(3.2.4). It is well known that CFD analysis packages provide excellent methods for the 

solution of 𝐿(𝑈�) = 𝑓. Therefore one requires to use a Reynolds averaged Navier-Stokes 

package supplemented with turbulence models to provide a solution of 𝑈�. Physically, one 

requires 𝑈� to be as accurate as possible to capture all the physics such as turbulence and 

vortices. 

 

3.3 DCM for Large Eddy Simulation 
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As mentioned in the previous chapter, Large Eddy Simulation is one of the common 

numerical techniques used to solve the PDE governing turbulent fluid flow. Within the 

technique, the large scale motions of the flow are calculated, while the effect of the 

smaller scales are modelled using a sub-grid scale model. Let’s recall the Navier-Stokes 

equations for an incompressible fluid, 
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Decompose each variable such as 𝑢𝑖 = 𝑢�𝑖 + 𝑢�𝑖  where 𝑢�𝑖  represents the variable in the 

average mean flow and 𝑢�𝑖  is the variable perturbation that is in several magnitudes 

smaller than the average mean flow. Therefore (3.3.1) becomes 
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assuming 
j

ji

x
uu

∂

∂ ~~
 is negligible. 

In the case of LES, all perturbation terms (in bracket) in (3.3.3) is denoted as 𝜏 in 

Equation (2.5) and such term will not be calculated using CFD techniques but instead of 

being modelled by SGS modelling. The objective here is to directly calculate the 

perturbation terms incorporating with the use of DCM. 

The average mean flow terms can be estimated using a CFD solver by eliminating all 

perturbation terms from (3.3.3), i.e. assuming 
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to solve for an approximation of the mean flow terms. The residual hence becomes the 

difference between (3.3.3) and (3.3.4) 
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Comparing the perturbation term here with the similar term in the LES model, there 

is a clear difference between the two. In LES, all perturbation terms are pre-modelled 

using SGS modelling whereas here they can be derived directly using the existing CFD 

solver as a correction term when solving the mean flow components. 

Subsequently it is also important to note that the average mean flow term iu  used 

here is different from the iu  in LES method mentioned in the previous chapter. LESiu _  is 

calculated using the modelled result 𝜏 by SGS model, whereas the iu  here is the direct 

calculation from a CFD solver. The advantages here are (1) the avoidance of using any 

modelling tools and (2) an improvement on sufficient use of existing techniques without 

changing the structure of the calculation matrix of a CFD solver. 

 

3.4 DCM for Lighthill’s Acoustic Analogy 

Also briefly mentioned in the previous chapter, Lighthill essentially recast the governing 

equations of fluid motion in the form of an inhomogeneous wave equation suitable to be 

applied in the far-field. Consider the flow of a compressible, viscous fluid in the absence 

of applied body forces. A complete set of equations which govern its motion is given by 

Conservation of Mass 

𝜕𝜌
𝜕𝑡

+ 𝜕(𝜌𝑢𝑖)
𝜕𝑥𝑖

= 0.   (3.4.1) 

Conservation of Momentum 

𝜕(𝜌𝑢𝑖)
𝜕𝑡

+ 𝜕�𝜌𝑢𝑖𝑢𝑗+𝑝𝑖𝑗�
𝜕𝑥𝑗

= 0,    (3.4.2) 

where 𝜌 and 𝑝 are the density and pressure of the fluid respectively, 𝑢𝑖  is the velocity 

components in the coordinate directions 𝑥𝑖 and 𝑡 is the time.  

Assuming the flow is taking place in a fluid with a constant density 𝜌̅, a sufficient set 

of equations of motion then becomes: 

Conservation of Mass 
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𝜕𝜌�
𝜕𝑡

+ 𝜕(𝜌�𝑢�𝑖)
𝜕𝑥𝑖

= 0.   (3.4.3) 

Conservation of Momentum 

𝜌̅ 𝜕𝑢�𝑖
𝜕𝑡

+ 𝜕�𝜌�𝑢�𝑖𝑢�𝑗+𝑝̅𝑖𝑗�
𝜕𝑥𝑗

= 0,    (3.4.4) 

where 𝑝̅  and 𝑢�𝑖  are the pressure and velocity components, respectively, in the 

incompressible flow.  

Consider now the solution of the compressible flow governed by (3.4.1) and (3.4.2). 

Let 

𝑢𝑖 = 𝑢�𝑖 + 𝑢�𝑖
𝑝 = 𝑝̅ + 𝑝�
𝜌 = 𝜌̅ + 𝜌�

   (3.4.5) 

where 𝑢�𝑖, 𝑝� and 𝜌� are the fluctuations in the velocity components, pressure about their 

compressible counterparts and the fluctuation of the density. 

Employing the expansions (3.4.5) in (3.4.1) and (3.4.2), 

Conservation of Mass 

𝜕(𝜌�+𝜌�)
𝜕𝑡

+ 𝜕�(𝜌�+𝜌�)(𝑢�𝑖+𝑢�𝑖)�
𝜕𝑥𝑖

= 0,    (3.4.6) 

Conservation of Momentum 

𝜕�(𝜌�+𝜌�)(𝑢�𝑖+𝑢�𝑖)�
𝜕𝑡

+
𝜕�(𝜌�+𝜌�)(𝑢�𝑖+𝑢�𝑖)�𝑢�𝑗+𝑢�𝑗�+�𝑝̅𝑖𝑗+𝑝�𝑖𝑗��

𝜕𝑥𝑗
= 0.   (3.4.7) 

Hence, 

𝜕𝜌�
𝜕𝑡

+ 𝜕(𝜌�𝑢�𝑖)
𝜕𝑥𝑖

+ �𝜕𝜌�
𝜕𝑡

+ 𝜕
𝜕𝑥𝑖

�𝜌𝑈𝚤� �� = 0,    (3.4.8) 

and 

𝜌̅ 𝜕𝑢�𝑖
𝜕𝑡

+ 𝜕�𝜌�𝑢�𝑖𝑢�𝑗+𝑝̅𝑖𝑗�
𝜕𝑥𝑗

+ �𝜕
𝜕𝑡
�𝜌𝑈𝚤� � + 𝜕

𝜕𝑥𝑗
�𝜌𝑈𝚤𝑈𝚥� + 𝑝�𝑖𝑗�� = 0,   (3.4.9) 

where 𝜌𝑈𝚤� = 𝜌̅𝑢�𝑖 + 𝜌�(𝑢�𝑖 + 𝑢�𝑖) and 𝜌𝑈𝚤𝑈𝚥� = 𝜌̅�𝑢�𝑖𝑢�𝑗 + 𝑢�𝑖𝑢�𝑗� + 𝜌��𝑢�𝑖𝑢�𝑗 + 𝑢�𝑖𝑢�𝑗 + 𝑢�𝑖𝑢�𝑗�, 

assuming 𝜕
𝜕𝑥𝑖

�𝑢�𝑖𝑢�𝑗� is negligible. 
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The flow variables in the incompressible flow can be estimated using a CFD solver 

by solving governing equation (3.4.3) and (3.4.4). The residuals hence become the 

difference between (3.4.8), (3.4.9) and (3.4.3), (3.4.4) 

𝑟𝑀𝑎𝑠𝑠 ∶=
𝜕𝜌�
𝜕𝑡

+ 𝜕
𝜕𝑥𝑖

�𝜌𝑈𝚤� � = 0,    (3.4.10) 

and 

𝑟𝑀𝑜𝑚𝑒𝑛𝑡𝑢𝑚 ∶= 𝜕
𝜕𝑡
�𝜌𝑈𝚤� � + 𝜕

𝜕𝑥𝑗
�𝜌𝑈𝚤𝑈𝚥� + 𝑝�𝑖𝑗� = 0.   (3.4.11) 

Both Lighthill’s analogy and the current approach require the flow variables in the 

incompressible flow to be solved using a CFD solver that resolves the governing 

equations of fluid motion. However, in the context of the difference beyond this point in 

process, in Lighthill’s wave equation (2.17), one has to develop a separate solver to 

resolve the source term on its right hand side in order to obtain the fluctuation of the 

flow’s compressible counterparts; whereas here such flow’s compressible variables can 

be derived directly using the same CFD solver as a correction term when solving the 

incompressible flow components. 

And, in this example again, it demonstrates the advantage of the defect correction 

approach being an improvement on sufficient use of existing techniques without 

changing the structure of the calculation matrix of an existing CFD solver. 

 

3.5 Closure 

This chapter has set a framework of the DCM for problems that exhibit multiple scales at 

the continuum level. Especially, this is linked to problems in CFD and CAA. The most 

advantage of employing DCM in these problems is the sufficient use of existing software 

calculation matrix structure.  

An application to aeroacoustic noise analysis will be detailed in the next chapter and 

this will lead to the idea of software automation utilizing defect correction concept.  
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Chapter  4 APPLICATIONS TO AEROACOUSTIC 
NOISE ANALYSIS 

 

In automotive industry, aerodynamic noise is the noise caused by temporal fluctuations 

of airflow around the body of a moving automobile. Aerodynamically induced noise 

represents a significant contribution to noise pollution inside passenger compartment. 

This aerodynamics noise becomes more intense as the velocity of the flow increases.  

A significant contribution to interior noise in road vehicles is buffeting due to the 

aerodynamic flow over an open sunroof. Buffeting noise is characterized by low 

frequency (often 10 to 50 Hz) tonal noise of substantial magnitude and may be a truly 

exhausting and even hazardous experience if persisting over long periods. The origin of 

buffeting noise is a shear-layer instability forming in the opening of a cavity subjected to 

grazing flow. In the shear-layer vortices are produced and they travel downstream of the 

opening, eventually hitting the rear edge. When the vortex breaks, a pressure wave which 

enters into the cavity is produced. At a certain speed, the vortex shedding frequency in 

the shear layer will match an acoustic mode of the cavity. Often, as in many wind 

instruments (e.g. the flute), the resonance is in the form of a standing wave. For an 

automobile cavity, the resonance is in the form of a Helmholtz mode, a special case of a 

standing wave but with a distinctly lower frequency. This is the same sound generation 

mechanism as when blowing air over a bottle opening. The reason for the high 

amplitudes is partly the fact that the listeners (driver and passengers) are located within 

the resonant body itself. 
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4.1 An overview of Techniques Used for Sunroof Buffeting Noise 

Problems 

4.1.1 Lattice Boltzmann Method 

Lattice Boltzmann Method (LBM) is a lattice-based system built upon a mathematical 

approach. LBM is a discrete formulation of the Boltzmann kinetic theory. The general 

form of the Boltzmann kinetic equation is 

( ),ffc
t
f

Ω=∇⋅+
∂
∂    (4.1.1.1) 

where function ( )tcxf ,,  represents the number of particles whose positions and 

velocities are x  and c  at time t . ( )fΩ  is an explicit expression for the collision function 

which determines physics of the flow. However, the macroscopic variables such as 

density ρ , velocity u  and internal energy e  can be deduced without knowing the form 

of ( )fΩ . 

Due to the quadratic aspect of ( )fΩ  and the multiple integrations in its analytical 

formulation, a linearized collision operator with a single relaxation time τ  has chosen to 

present the collision operator ( )fΩ  

( )
,

τ

eqff −
−=Ω    (4.1.1.2) 

where ( )eqf  is the equilibrium function. 

Coupling between vortex shedding over automotive sunroof and acoustic resonance 

of the passenger compartment can induce strong self-sustained oscillations of the flow. A 

detailed study of the phenomenon by Ricot, Maillard and Bailly [Ricot et al, 2001] shows 

that aerodynamic coupling also participated to the self-sustained oscillation when the 

flow characteristics lead to aerodynamic frequencies outside the “frequency-of-

aerodynamic-instability and resonance-frequency-of-vehicle matching range”, which is 

when the maximum amplitude oscillation occurs. LBM is used. Instead of solving the 

Navier-Stokes equations, the discrete Boltzmann equation is solved to simulate the flow 

of Newtonian fluid with collision models such as Bhatnagar-Gross-Krook (BGK). Unlike 

conventional numerical codes which use a discretisation of macroscopic continuum 
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equations such as the Navier-Stokes equations, the LBM is based on mesoscopic kinetic 

equations and a particle distribution function. 

A benchmark case has been chosen to study the possibility of performing turbulent 

simulations with the solver. A free shear layer expands from a splitter plate between two 

parallel flows with an impingement wedge placed at downstream (see Figure 4.1). A 

modelling of the effects of sub-grid turbulent fluctuations is introduced. A structured, 

cubic Cartesian mesh and a grid refinement scheme which refines the grid size in each 

direction equally and successively by a factor two is applied. 

 

 

Figure 4.1: A benchmark case: splitter plate (left) and impingement wedge (right) 

 

Velocity signals show that the amplitude of aerodynamic disturbances is too weak 

compared to experimental data. This default is due to the damping effect of the eddy 

viscosity model based on the ε−k  RNG equations. Because of the over-damping of high 

frequency fluctuations, the preferred oscillation frequency is shifted toward a lower 

spurious resonance frequency of the computational domain. The turbulence modelling is 

still a limiting aspect of flow simulations with Lattice Boltzmann Method. 

 

4.1.2 Large Eddy Simulation (Two Dimensional) 

As mentioned in the introduction, direct sound computation based on LES for application 

to engineering flows still remains expensive due to the requirement of an accurate three-

dimensional computation with fine mesh and small time-steps plus other computational 

issues. Dubsky [Dubsky, 2003] tries to investigate the possibilities and restrictions of 



48 

 

LES for solving the aeroacoustic properties for a model of car sunroof. A simplified 

model of the sunroof type is used. 

 

 

Figure 4.2: A simplified model of the sunroof and car cavity 

 

The flow can be treated as incompressible, as the compressibility has no effect on the 

acoustics according to Ffowcs-Williams [Ffowcs–William, 1969]. Central differencing 

scheme for momentum is chosen. 

The time step is tuned in each resolution regions to ensure a constant CFL < 1. CFL 

condition: Courant number is a relation between the time step size, velocity of the flow 

and the cell size. The appropriate time step size can be calculated from Equation 4.1.2.1 

to satisfy the condition 1<C . 

u
xCt δδ =

.
   (4.1.2.1) 

C  is the Courant number, tδ  is the size of the time step, u  is the highest velocity 

component and xδ  stands for the cell size in direction of u . The size of the time step is 

related to the highest frequency (20 kHz), which can be registered by human ear, i.e. 

se
f

tt 55
20000

11 −===<<δ . Breaking this condition set would not be able to analyse 

the whole spectrum of audible sound. However, to make the simulation faster, it is 

possible to go slightly over these restrictions, as this limitation is based on the highest 

frequency (“worst” scenario). 

Strouhal number is used to check the obtained frequency from the noise analysis 

with the empiric formula result. 
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   (4.1.2.1) 

Three assumptions for noise analysis: 

1. The sound is radiated into free space. 

2. The sound induced by fluid flow is weak (i.e. the backward-

interaction of acoustic phenomena on the fluid flow is negligible). 

3. The fluid flow is not sensitive to the sound induced by the fluid flow. 

To reach the dynamically steady state, Dubsky used Reynolds Stress turbulence 

model and steady simulation with default settings to reach a state close to the 

dynamically steady one. This reduces the calculation time significantly. Monitoring 

pressure in certain point and analysing its behaviour should identify the dynamically 

steady state. 

 

 

Figure 4.3: Static Pressure Contours – LES 

 

 

Figure 4.4: Static Pressure Contours – steady state, RSM 

 

In this sunroof problem, the LES simulation failed to converge, which also caused 

the noise analysis result not realistic. The reason for the incorrect results may be caused 

by: 
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• Mesh properties. The size difference between the small cells near the sunroof tip 

and the bigger ones near the boundaries of the domain is simply too large. This makes 

large differences in the sub grid turbulence modelling. The value of sub grid turbulent 

viscosity varies too much across the domain. 

• Using of the paved meshing method. It works on simple geometries (e.g. the 

cylinder problem). Unfortunately, for more complicated geometries the benefits of using 

mapped quadrilateral cells are either too small or it is not possible at all to build some 

reasonable mesh. 

• The use of LES in 2D. Because the turbulence is phenomenon occurring in 3D 

Because of extreme time and computational power needed, it turned out (as expected) 

that it was not possible to solve the acoustics of the example of the car geometry by 

direct sound computation based on LES, even if it was simplified and modelled in 2D. 

 

4.1.3 Incompressible Navier-Stokes Equations plus Weak Compressible Flow 

Model 

Use the finite volume method (FVM) on the collocated grid system to conserve the mass 

and the momentum on the discretized fundamental equations. The weak compressible 

flow model derived through the assumption of a slight nominal density fluctuation is 

used to simulate the buffeting phenomenon by Inagaki, Murata, Kondoh and Abe 

[Inagaki et al, 2002]. 

When conducting actual aerodynamic noise analysis, two methods can be applied 

after accurately calculating the fluctuations at the flow field that is the source of the noise: 

a) The characteristics of noise are indirectly predicted utilizing the flow 

pressure fluctuations. 

b) The sound pressure at the point of observation is calculated by applying the 

Lighthill-Curle theory to the computational results of the unsteady flow field. 

For ordinary flow velocity of a vehicle in motion, the airflow around the vehicle 

body is treated as an incompressible flow, which allows changes in density to be ignored. 

However, in regards to buffeting noise analysis, the treatment of incompressible flow is 

inadequate. 
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The governing equations for dimensionless unsteady incompressible flow can be 

expressed as 
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∂

∂
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Also, the Lighthill-Curle theory determines the sound pressure aP  at any observation 

point using the following equation 

∫∂
∂

=
S

i
i

a PdSn
tr

x
c

P 24
1
π

.
    (4.1.3.4) 

c  is the sound speed, ix  is a component of the positional vector of the observation 

point, r  is the distance to the observation point, and P  is the flow pressure on an object 

surface. If the flow pressure on the object surface is determined at every time using 

Equation (4.1.3.1) and (4.1.3.2), then it is possible to calculate the sound pressure at an 

observation point using Equation (4.1.3.4). Equation (4.1.3.4) can be derived from the 

governing equations for compressible flow by simplifying the equation and assuming the 

following ideal conditions: 

a) Unlimited space, in where the object is included completely. 

b) The distance to the observation point is sufficiently larger than the sound 

wavelength. 

c) The distance to the observation point is sufficiently larger than the size of the 

interior object. 

d) Flow velocity is significantly lower than sound speed – low Mach number. 
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Structured grid is utilized – uniformly lined (orthogonal, equidistant) much like a 

chessboard at least in the computational space. In each grid cell, physical quantities 

(velocity, pressure, etc.) are calculated by the discretization of the basic flow equation 

based on a high-accuracy scheme. Generally, body fitted grid is used, which fits the grid 

lines on the boundary surface of the target object and concentrates the grid points near 

the surface. However, when geometries with complicated areas are computed, it is 

difficult to cover them with single structured grid block of sufficient quality.  

To deal with such problem, an overset grid method is introduced which focuses in 

local shapes on the object and boundary. After generation of a partial grid appropriate for 

each boundary shape or the characteristics of flow field, multiple grid blocks are layered 

over each other (so that data can be mutually transferred between the grids in the 

overlapped region) and the entire area to be computed is covered. This method is 

extremely effective for reducing man-hours and improving usability, also, computational 

accuracy is improved as a result of the ability to generate a better grid. 

 

 

Figure 4.5: An example of overset grid system 

 

For the governing equations, QUICK scheme (the third order upwind difference 

scheme) is applied, and the Crank-Nicolson method is used on the time integration. 

Because Helmholtz resonance is caused by slight density fluctuations, it is 

impossible to predict the buffeting noise using a computation that assumes an 

incompressible flow. Accordingly, the following governing equations, which model the 

weak compressibility on the flow field of low Mach numbers, are solved numerically. 
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M  is the Mach number and has a value of approximately 0.1 at the flow around the 

vehicle body. The equations of the weak compressible flow are considered as the 

incompressible flow Equations (4.1.3.1) and (4.1.3.2) with additional terms. In particular, 

the left side of the Equation (4.1.3.5) of continuity expresses the effect of weak 

compressibility. Because the values are small, and also in order to accurately estimate the 

effects numerically, a method for accurately solving the original Equation (4.1.3.1) of 

continuity is necessary. 

Concerning the estimation of sound pressure fluctuations, Lighthill-Curle theory is 

thought to be the most reliable, but its field of application is limited. In such cases, it is 

necessary to use the pressure fluctuations of the flow field as a substitute. 

 

4.2 The Present Approach – The Current Study 

In the last section, various techniques used by different researchers in the last decade to 

simulate buffeting phenomenon due to an opening sunroof of an automobile have been 

reviewed. The latest industrial practice, which is currently used by a number of major 

automobile manufacturers, involves the use of PowerFLOW [Exa Corporation], a 

commercial code which employs the Lattice Boltzmann Method (LBM) to recover the 

Navier-Stokes equations. The resolved time history of pressure fluctuation under the 

sunroof could then be converted into the frequency domain by PowerACOUSTICS [Exa 

Corporation], a code to test the acoustic (Helmholtz) resonance frequency of the cabin. 

The downside of such approach is the computational cost. For a typical sunroof 

simulation, on average it requires approximately 10,000 CPU hours. Also, it has been 

noticed that there has been an improving trendof computational methods from LBM with 

a ε−k  RNG turbulence model to Subgrid-scale (SGS) turbulence model used in Large 

Eddy Simulation (LES) and even Direct Numerical Simulation (DNS) can be noticed.  

The rapid advance of computational power in recent years allows LES being used on 

many applications with reasonably high Reynolds number. The main advantage of LES 
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over those computationally less expensive methods such as Reynolds-averaged Navier-

Stokes equations (RANS) is the increased level of detail it can deliver. While RANS 

methods provide “averaged” results and turbulence models over-damping the high 

frequency fluctuations, LES is able to predict instantaneous flow characteristics and 

resolve turbulent flow structures of large scales (i.e. the energy-containing eddies), which 

are known to contribute most to the sound generation in many problems. Thus it offers 

significantly more accurate results over RANS for flows involving flow separation or 

acoustic prediction. LES is used extensively to elucidate the physics of turbulence and to 

compute flows of industrial relevance, wherever Reynolds-averaged models are not 

sufficiently accurate and Direct Numerical Simulation techniques are prohibitively 

expensive. 

The difficulty in achieving predictive simulations is perhaps best illustrated by the 

wide range of approaches that have been developed and are still being used by the 

turbulence modelling community; Implicit Large Eddy Simulation (ILES) is one of them. 

ILES is a relatively new approach that combines generality and computational efficiency 

with documented success in many areas of complex fluid flow. Instead of using a 

subgrid-scale model for a classic LES to model the motion of those non-energy-

contained eddies, ILES uses a higher-order discretisation method with a limiter. The 

limiter is originally meant to avoid numerical oscillations in the solution, but it also 

works as a subgrid model for small eddies according to Ciardi, Sagaut, Klein and Dawes 

[Ciardi et al, 2005]. The concept of using a higher-order discretisation method as a 

subgrid scale model in ILES, with a fine mesh, small time-steps numerical approach to 

resolve the unsteady flow field is implemented in this current study described below. 

In this current study, a hypothetical car configuration with an open sunroof with part 

of the compartment forming the resulting cavity has been examined. The car is travelling 

at a cruising speed with induced flow fluctuation due to the open sunroof. The pressure 

perturbation along the sunroof is computed by solving the two dimensional unsteady 

compressible Navier-Stokes equations using a typical commercial Finite Volume CFD 

package, PHOENICS [CHAM Limited], and the pressure fluctuation due to the sunroof 

is extracted and analysed. Various high order numerical schemes are tested and compared 

to provide a better understanding of their advantages and disadvantages for this 

application. In order to study the acoustic response inside the car compartment, the 

acoustic pressure distribution is calculated by solving the Helmholtz equation. Some of 
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the tests carried out in Wang’s work [Wang et al, 2004] was based on a two scale 

expansion in an investigation of car-door cavity is in essence an early incomplete form of 

the DCM framework. The coupling of software is thus requested after the decoupling of 

scale difference as discussed in the solution strategies in Chapter 2. Therefore, without 

loss of generality it would be easier to demonstrate the sunroof cavity noise problem 

using a simplified approach of an artificial vortex travelling along with the main stream 

fluid flow over the cavity in order to illustrate the coupling of two different software 

packages. 

 

4.2.1 Solutions of unsteady Navier-Stokes Equations 

Previous experience of an open cavity with a lip shows induced oscillatory fluctuation of 

pressure by Wang, Djambazov, Lai and Pericleous [Wang et al, 2007] caused by shear 

layer separation at the upstream end.  This leads to further interests in related problems 

such as a hypothetical car with an open sunroof as depicted in Figure 4.6. The length of 

the sunroof is 0.6m and the effective depth of the opening lip (thickness of the sunroof) is 

0.05m. The free stream velocity is 25 m/s (approx. 90 km/h). In order to excite the flow 

to get stronger pressure fluctuation response on top of the sunroof, an artificial sinusoidal 

vertical-velocity disturbance is used to represent a single vortex generated by vehicle 

travelling at upstream of this car. The vortex strength is given by )2sin(0 atWW π= , 

where W0 = -1.2 m/s and a is a parameter chosen as a constant independent of time. 

Different frequencies of this upstream vertical-velocity disturbance are applied to 

generate different acoustic responses on the top of the sunroof. 

 



1.28m 0.52m 0.3m 0.6m 1.35m 0.35m 

25rnls 

0.52m � 

Figure 4.6: A hypothetical car with open sunroof 

In this calculation, a Finite Volume based software package, PHOENICS, is used to 

compute time-accurate unsteady flow fields. The package may be used in the 

computations of compressible and incompressible flows. 

The backflows through the outlet bounda1y should be avoided. When a strong vo11ex 

hits the pressure outlet, it creates backflows which are caused by less well-converged 

temporal solution (limited by max number of iterations), it affects the vo11ex shedding 

from the object. That is why it is necessa1y to extend the domain downstream. In the 

present simulation, the computational domain is taken as 17.6m by 8.8m. PHOENICS 

uses a structured, regular Ca11esian mesh and a gird refmement scheme which refines the 

grid size in each direction equally (see Figure 4.7). The minimmn grid size is 

Axmin = 2.5e-2m. Four levels of grid resolution are used. To satisfy both the mass and 

momentum conservation laws, the velocity and pressure field are solved iteratively by 

using the SIMPLE pressure-conection algorithm proposed by Patankar [Patankar, 1980]. 

In using PHOENICS, standard boundruy conditions ru·e used for inflow, solid wall, and 

fru·-field boundaries. Five different discretisation schemes have been tested in this study 

in order to provide a better understanding of their advantages and disadvantages for the 

present study. In order to resolve the acoustic disturbance conectly a minimum of 20 

temporal integration steps were chosen to represent each oscillation cycle at the highest 

frequency of interest. The time step length, 5t, chosen for the temporal integration is 1 o-

3s resulting in a maximum resolved frequency of 50Hz. 
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Figure 4.7: Fine Grid applied to the airflow around the car configuration and finer grid specifically focused on 
top of the sunroof opening 

 

4.2.2 Extracting Pressure Fluctuations 

Two factors contributed to the pressure fluctuation above the sunroof.  First the incoming 

flow over certain vehicle’s body.  Second the artificial disturbance introduced upstream 

of the configuration. For the present study the artificial disturbance requires a time equal 

to tδ528  to reach downstream of the sunroof. It is possible to use the pressure obtained 

from the CFD calculation to examine the frequency response inside the car compartment. 

The pressure fluctuation along the upper surface of the car configuration and at the 

sunroof opening is given by ( ) ( ) ( )txPtxPtxPf ,,, −= , where P  is the instantaneous 

pressure distribution along the upper surface obtained by using the CFD calculation and 

P  is the background pressure distribution along the upper surface due to the upstream 

velocity and the car configuration. 

 

4.2.3 Numerical Schemes for Convection Discretisation 

In all Finite Volume CFD codes for which cell-centre values of variables are stored, as in 

the schematic diagram below, values of the variable φ  are known for the cell centres W, 
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P and E; but the values of φ  at face w, which travels from cell W to cell P, or from P to 

W, may be calculated by using a number of numerical schemes. 

 

      --------------------------------------------- 
            |              |              |              | 
            |      W      w|      P       |      E       | 
            |         -------->           |              | 
            |              |              |              | 
      --------------------------------------------- 
 

The numerical scheme influences the balance equations for both cell W and cell P. 

To ensure fairly good solution one can choose w Wφ φ=  when the flow is from W to P, but 

w Pφ φ=  when the flow is from P to W. This scheme, or the so-called "hybrid" variant of 

it, is used as the default numerical scheme, together with other schemes, in PHOENICS. 

In this study, five different numerical schemes, three linear and two non-linear schemes 

as listed below, are being tested and each of them has a different approach to calculate 

the cell face value wφ . 

• UDS Upwind-differencing scheme:  w Wφ φ=  

• CDS Central-differencing scheme:  
2

P W
w

φ φφ +
=  

• QUICK Quadratic upwind scheme:  3 3 1
8 4 8w P W WWφ φ φ φ= + −  

• SMART Bounded QUICK:  ( )0.5w W W WWBφ φ φ φ= + −  

• HQUICK Harmonic QUICK:  ( )( )
0,

2
0,

2 3

w W

P W W WW
w W

P W WW

if r

if r

φ φ
φ φ φ φ

φ φ
φ φ φ

≤ =


− − > = + + −

 

Here 
3 1max 0,min 2 , , 4

4
rB r +  =     

, P W

W WW

r φ φ
φ φ

−
=

−
, and WWφ  is the cell-centre 

further upstream. 
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Figure 4.8: Observation points in the computational domain 

 

Figure 4.8 shows nine observation points marked with their location numbers along 

the same vertical level where the artificial disturbance is introduced. The time history of 

the pressure fluctuations at these observation points are shown in column 2 in Table 4.1. 

A zoom-in to the neighbourhood of the sunroof with seven other observation points and 

their pressure fluctuations are shown in column 3. It can easily be seen that first order 

accurate Hybrid / Upwind scheme and third order accurate HQUICK scheme are too 

dissipative to capture any meaningful pressure fluctuation at top of the sunroof and 

therefore are not suitable for this type of example. As a result, the magnitude of pressure 

fluctuations observed on top of the sunroof is very small. CDS even failed to converge 

because the cell Peclet number is not guaranteed to be less than 2. However, SMART and 

QUICK scheme show more interesting results. The pressure fluctuations on top of the 

sunroof gradually grow in magnitude in a sinusoidal form. The fluctuations obtained by 

using QUICK scheme lead to a more stable and regular sinusoidal shape. In a snapshot of 

vertical velocity disturbance at st 5.0=  (Figure 4.9), it shows the amplitude of 

aerodynamic disturbances is gradually becoming weaker and weaker. This is due to the 

numerical scheme dissipation. However, a clear vortex shearing on top the sunroof can 

still be observed. At this stage, QUICK seems to be the best high order scheme to be 

applied for this application. 
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Numerical 

Scheme 

Pressure Fluctuation at nine 

observing points 

Pressure Fluctuation at all seven 

points on top of sun-roof 

 

 

Hybrid / 

Upwind 

  

 

 

 

HQUICK 

  

 

 

 

SMART 

  

 

 

 

QUICK 

  

Table 4.1: Comparison of pressure fluctuations using different numerical schemes 

 



Figtu·e 4.9: A snapshot of Z component velocity distut•bance at t = O.Ss. On top, it is the zoom-in image on top of 
the sunroof 

4.2.4 Analysis of Acoustic Response 

Using the results from the QUICK scheme, frequency components of the pressure 

fluctuations are then examined by producing an acoustic power spectmm of the time 

hist01y at all seven points on the sunroof via sampling a 512-point Fast Fourier 

Transfom1 (FFT). The spectrum is depicted (Figure 4.10) and shows the dominant 

frequency at all obse1vation points on the sunroof occurs roughly at 13Hz. 
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Figut·e 4.10: Power spectrum density ofthe time history via a 512-point FFT 
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The validity of the results of the dominant frequency is checked against a Helmholtz 

resonator with similar shaped and sized cavity. The resonant frequency for a typical 

Helmholtz resonator may be approximately calculated by the f01mula, 

f = (c 12n)�AI(leffV) , where leff = l +/cor = l + TJr denotes the effective length of the air 

at the opening, l is the geomeu·ic neck length (i.e. 0.05m, in Figure 4.6). !cor is the end 

conection on the neck length, which can be expressed by a product of r , the radius of 

the neck, and TJ, an empirical coefficient which significantly depends on geomeu·ical 

configuration and sizes. A is cross sectional area of the neck, V represents the volume of 

the inside cavity. Although the f01mula is for an idea situation and completely neglects 

the shear layer, it gives only an approximate indication of the frequency of oscillation of 

the cavity. An approximate value of the dominant resonant frequency with 1J = 16.9 is 

around 10.5Hz. It must be pointed out that this is not a su·ict comparison due to the 

coefficient unavailable cunently for the cavity of the car compmiment considered. 

However, even so, this cmde compm·ison shows that the dominant frequency value 

obtained through the unsteady computation is a physically acceptable approximation. 

To study the acoustic response along the sunroof, different frequencies of the 

upsu·eam disturbance m·e applied. Numerical tests as a function of input disturbance are 

perf01med to verify the hypothesis that the lower the frequency of disturbance, the lower 

the frequency of acoustic response obtained. In this study, 25Hz and 1OHz disturbance 

frequencies are compm·ed with the maximum resolvable frequency of 50Hz (see Table 

4.2). The power specu·a show that for incoming disturbance at a frequency higher than 

25Hz the dominant mode of the noise generated due to the smuoof occurs at roughly 13 

Hz which is the resonant frequency. On the other hand for incoming disturbance at lower 

frequency, say 10 Hz, seems to excite a half hmmonic at m·ound 6Hz while maintaining 

the ha1monic of 13Hz at a weaker su·ength. 

62 



50Hz 25Hz 10Hz 

500 60cm S unroof 

t400 -A +i 
/,, - Bl-

�300 '15/_ 

�200 Ll� 
-o-lll! 
-+-ll -

1100 ll -+- illl 
' :\. Afl-."\.. ::::!=l!...l-
t 0 

25Hz i n� disturbence 350 300 �r---
t� 

-+-ie6 I--'151 I--jrso _.;es 

� _,._;eg r---.lhoo -+-Uil r---}so "'""��\.. �i71 
..... 0 

10Hz inlet cr.sturbence 900 
800 -+-i65r---i700 -i66 r---�600 ;jJJf---j 500 ...-;ea f---'400 -i69 r---,t300 - ......... i70 r---

1200 -----; - · 
/::;. -+-utr----

100 
L 0 J. 

5 10 15 20 -100 -
-50 '" 

-.,..y 
-100 " ''F,. ... ..;" 

•v 

Obtained f = 13Hz Obtained f = 12Hz Obtained f = 6Hz 

Table 4.2: Comparison of peak ft·equencies obtained via a 512-point FFT due to different incoming distm·bances 
of 50, 25 and 10Hz 

4.2.5 Use of Wave Equation Inside Car Compartment 

As mentioned previously, sound waves are typically several orders of magnitude smaller 

than the pressure variations in the flow filed that accmmt for flow acceleration. The idea 

of applying DCM comes into the evaluation of the defect due to the pressure produced by 

the mean flow in such a way that the pressure fluctuation due to the acoustic perturbation 

is significantly smaller in magnitude, resulting in the decouple of the two disparate 

magnitudes. The solutions of the Reynolds averaged Navier-Stokes equations (i.e. the 

solution derived from the existing CFD software, PHOENICS) reveal only a truncated 

pru.i of the full physical quantities. The basic principle of the defect correction can be 

applied to recover the propagating acoustic peliurbation. By doing so, it relies on 

Lighthill's acoustic analogy to perfotm wave u·avelling. 

In Lighthill's acoustic analogy Equation (2.17), the source te1m on the right hand 

side of the equation consists detailed fluid flow motion around acoustic source region 

(neru.·-field). In this pmticular case, due to the ratio between the width of the opening of 

the cavity (i.e. sunroof, in this case) and the depth of the cavity (i.e. height inside car 

compa1iment) is relatively high; the aerodynamic motion inside the car compru.iment can 

be effectively neglected. In other words, Lighthill's equation can be rewritten as a 

homogeneous wave equation expressed as 

(4.2.5.1) 
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In order to transfer the wave equation from a time domain into frequency domain, one 

needs to integrate Equation (4.2.5.1) with respect to time by using Fast Fourier 

Transform (FFT), 

∫ ∫
∞

∞−

∞

∞−

=∇−
∂
∂ 0~~

22
2

2

dtecdte
t

titi ωω ρρ     (4.2.5.2) 

one obtains in a simplified form, i.e. Helmholtz equation, 

2 2 2 0cω ψ ψ− − ∇ = ,    (4.2.5.3) 

where 

∫
∞

∞−

= dte tiωρψ ~

.
   (4.2.5.4) 

To implement the acoustic propagation by Helmholtz equation in this case, it is 

assumed that the flow inside the car compartment is negligible. For the present study the 

analysis of sound distribution for the dominant frequency of f = 13Hz due to an incoming 

disturbance of 50 Hz is examined.  The power spectrum density along the sunroof is used 

as Dirichlet boundary conditions for the Helmholtz equation, which calculates the 

acoustic pressure distribution inside the car compartment. 
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Figure 4.11: Acoustic pressure inside the car component along several horizontal and vertical lines 

 

Figure 4.11 shows the acoustic pressure distribution along several horizontal lines 

and vertical lines below the sun-roof inside the car compartment.  It shows that the 

highest acoustic pressure is experienced at x 7.1m. On the other hand along the 

horizontal line just below the sun-roof the pressure shows an oscillatory behaviour 

resulting from the pressure fluctuation above the sun-roof.  This oscillatory behaviour 

gradually becomes weaken as one moves deeper into the car compartment. The acoustic 

pressure distribution along all vertical lines seems to show the corresponding behaviour 

in such a way that oscillatory effects deep inside the car compartment disappear. This 

shows that the solution obtained is reliable.  The acoustic pressure tends to be more 

stable at the bottom of the car compartment. The computational results obtained from the 

test cases above have been presented in Lai, Lai, Pericleous, Djambazov [Lai et al, 2009]. 
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4.3 Closure 

A coupling method, in which the near-field of the unsteady flow is simulated by a fine-

mesh-small-timestep-LES-alike numerical method applied in two-dimension, and the 

acoustic propagation is resolved by Helmholtz equation to predict buffeting noise inside 

a car compartment due to aerodynamic flow over an open sunroof, has been tested. The 

acoustic result obtained is believed to be reliable and appropriate.  

In summary, a typical second order finite difference method for convection diffusion 

equations leads to a penta-diagonal linear system. Different high order schemes used in 

an unsteady Navier-Stokes problem generates different sparse structures for the linear 

systems. Handling different types of linear system may require different methods in order 

to achieve optimal speed. One disadvantage of developing high order schemes within a 

CFD software package is that it complicates the nonlinear and linear solver routines. 

However, new routines might be required, therefore, software re-use becomes extremely 

difficult. Data structure becomes a problem every time a new high order scheme is being 

introduced and deployed in the CFD software environment. Automation of software 

becomes difficult. In the next chapter, the framework of the DCM is to be used to 

improve software re-usability. 
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Chapter  5 THE DEFECT CORRECTION 
FRAMEWORK FOR PROBLEMS AT THE 

DISCRETISED LEVEL 
 

As presented in the test case in last chapter, the buffeting noise along the sunroof is 

computed by solving an Implicit-LES-like method with high-order-scheme-filter-effect, 

instead of the classic LES supplemented with a sub-grid scale turbulent model, but in 

two-dimension. Fine time steps and spatial mesh are used. Spatial discretisation in higher 

order provides better numerical approximation than using 2nd order CFD schemes. This 

is in essence a LES, however, not strictly in its sense, since LES applies to Three 

Dimensional problem, but this is 2D. 

High order schemes are usually very difficult to implement without significant re-

arrangement of the linear equations. They require to have its matrix coefficients re-

calculated and stored in data structures that may be very different from the existing 

schemes.  Therefore it is necessary to write completely new codes and incorporate these 

codes into an existing CFD software in order to benefit the software platform.  On the 

other hand high order schemes generate truncation terms which are not completely useful 

in the context of LES.  This chapter examines the concept of an efficient implementation 

of high order schemes without interrupting the software platform and the related 

truncation errors in the context of LES.  In later investigation attention is paid to the 

reasoning behind the use of filters, such as box and Gaussian filters, in LES and their 

relations with the truncation errors.  It is an early attempt in this thesis to explore such 

relationship in order to provide a robust implicit-LES-like method for 2-D simulation.  



68 

 

This will provide an economical tool with quick turn-over of numerical experiments in 

identifying major possible noise sources.  

 

5.1 Analysis of a One-Dimensional Problem 

A steady state convection and diffusion problem of one dimension is given as 

( ) ( ) ( ) ( ) ( ) ( ) [ ],1,0,,, ∈=+′+′′− xkxfxxbxxax kαφφφ    (5.1.1) 

where ( )xφ  is the physical variable, ( )xa  and ( )xb  are two given functions of x  and kα  

is a sequence of random numbers in (0,1). The r.h.s. is defined as 
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𝐿
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𝑘=0 .   (5.1.2) 

Here 𝐴 is the amplitude, 𝐿 is the size of the domain, and 𝑁 is a value normally chosen as 

half of the number of grid points.  In the test below the values of 𝐴 and 𝐿 are chosen as 1.  

The boundary conditions for the problem in Equation (5.1.1) are chosen as 

( ) ∑
=

=
N

k
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0
sin20 παπφ and ( ) ∑
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+=
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kkk

0
)2sin(21 παππφ . 

This problem has analytical solution (see Figure 5.1) 
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kAx παππφ
 

   (5.1.3) 

Note that the analytical solution, which involves a function of sin, is to mimic the 

artificial sinusoidal vertical-velocity disturbance that is used to represent a single vortex 

at the upstream of the car configuration in the previous car sunroof problem. 
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Figm·e 5.1: Analytical solution for the one dimensional pt·oblem with N = 201 

Obtaining different high order finite difference discretisations for equation (5 .1.1) is 

a tedious task affecting the software development. A systematic algorithm has been 

developed for an easy implementation of high order schemes based on the concept of the 

defect conection method. 
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(5.1.5) 

where h is the step size and qy; , qy;', ... , f/Ji 

<6> represent the fust, second and up to sixth 

orders of accuracy. 

Adding Equation (5.1.4) and (5.1.5) to obtain the second derivative as in Equation 

(5.1.6), and subtracting Equation (5.1.5) from (5.1.4) to obtain the first derivative as in 

Equation (5.1.7). 
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Substitute Equation (5.1.6) and (5.1.7) into Equation (5.1.1), one gets 
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where iτ is the high order truncation term form the Taylor’s series expansion. Hence for 

2nd order accuracy of the approximation used in (5.1.8) one has the truncation denoted as 
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According to the DCM, to ease the complexity and obtain the flexibility of the 

software implementation, one can solve for an approximated solution and then calculate 

for a correction using the same form to obtain the final solution. Rearrange Equation 

(5.1.8) as making iφ  to be the resolved variable, one gets 

,**
iiihi fLL =+= τφφ     (5.1.9) 

where *
iφ  is the resolved solution. To achieve an approximate solution iφ , the program 

can be used to solve 

.iih fL =φ    (5.1.10) 

Subtract Equation (5.1.10) from (5.1.9) one gets, 

iihL τφ −=
~

   (5.1.11) 

where  

iii φφφ −= *~
   (5.1.12) 

Hence, one can use the same program as used to calculate iφ  to calculate the 

“correction” iφ
~  in order to obtain the final solution iii φφφ ~* += . 
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uniformly weighted average. Hence Gaussian filter provides gentler smoothing and 

preserves fluctuations and peaks up to certain frequency better than a similarly sized Box 

filter.  

Based on these investigations, there seems to be a certain relationship between a 

given high order scheme with a mesh size and the effect of a filter. As shown in previous 

comparison, it is not difficult to notice that both 4th order accuracy numerical 

approximation and Gaussian filtered solution show good agreement with the analytical 

solution roughly on the same level. Same observation applies to 2nd order accuracy 

numerical approximation and Box filtered solution, however, they show agreement with 

the analytical solution respect to a larger scale. From the comparison of their total errors 

from analytical solution (see Table 5.1), it is very interesting to see that similarities 

between 2nd order numerical solution and Box filtered solution, as well as between 4th 

order numerical solution and Gaussian filtered solution, are observed while both step-

sizes applied are twice as big as both filter-sizes (i.e. xx ∆= 2δ ). Further investigation 

and more test cases are needed to explore the relationship between higher order 

numerical schemes and filtering effects. 

 

 

Table 5.1: Comparison of total errors between high order (2nd and 4th order) numerical approximations and 
analytical solution, as well as filtered (Box filter and Gaussian Filter) solutions and analytical solution 

 

5.3 Closure 
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A simple one dimensional numerical example has been resolved by using DCM up to 4th 

and 6th order of accuracy. 2nd and 4th order schemes are compared with two different 

types of filtering effects: Box and Gaussian filters; and similarity between them has been 

discussed. The use of DCM has been tested initially to become a possible concept of re-

use existing CFD linear solvers without affecting the data structure of the software. 
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Chapter  6 CONCLUSION AND FUTURE WORK 
 

This thesis examines a general framework of the DCM.  The principle of the method is 

described and the concept is demonstrated using various examples.  The framework is 

then extended to simple perturbation problems that exhibit multiple scales at the 

continuum level. One key advantage of the framework is to allow multi-scale problems 

to be implemented easily using existing commercial fluid dynamics and CFD packages. 

The framework can be applied to direct sound computation techniques such as 

Reynolds averaged Navier-Stokes equations and Large Eddy Simulation, and also to the 

Lighthill’s Acoustic Analogy. It shows the applicability of the framework that is suitable 

for all the development has been built. In particular, the derivation of Lighthill’s Acoustic 

Analogy has demonstrated a much simpler approach to resolve the flow’s compressible 

counterparts without solving the more complicated wave equation in a separate solver.  

A coupling method, in which the near-field of the unsteady flow is simulated by a 

fine-mesh-small-timestep-LES-alike numerical method applied in two-dimension, and 

the acoustic propagation in the far-field is resolved by Helmholtz equation to predict 

buffeting noise inside a car compartment due to aerodynamic flow over an open sunroof, 

has been tested in this thesis. The acoustic result obtained is believed to be reliable and 

appropriate.  A comparison between the filtering effect and the use of high order schemes 

has successfully illustrated the relation between them. This has further demonstrated that 

such LES-alike method which uses high order scheme in its calculation is an appropriate 

and effective way of achieving similar result as the original LES method with relatively 

less computational time [Sagaut, 2006]. From this exercise, it is observed that different 

high order schemes used in an unsteady Navier-Stokes problem generates different sparse 
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structures for the linear systems. Different sparseness of the linear system requires 

different linear solvers in order to achieve optimal speed of convergence.  The 

automation of software and software re-usability is most effected each time when a new 

compact high order scheme is developed.  The approach described in this thesis opens an 

opportunity for a flexible choice of the order of accuracy without increasing the 

additional work in implementing algorithm within the existing software environment.  In 

other words automation of software is enhanced. 

The use of DCM opens a new way of software re-use without major amendments to 

data structure within each software coding. Evaluation of the defect can be done without 

affecting the data structure of the linear solver. 

For future work, thorough comparison between high order schemes and filtering 

process needs to be conducted. Further tests on higher order scheme (6th and 8th order) 

and compare results with other type of filters. Such tests can also be extended to 2-D or 

3-D problems. Several 2-D buffeting noise test examples and time dependent test 

problems are to be examined using a variety of different high order schemes, and their 

filtering effects are to be summarised whilst looking for a possible alternative for sub-

grid modelling. An implementation based on the framework of DCM should be built into 

an existing industrial CFD software so that it no longer needs to rely on an external 

coupling technique to resolve the acoustic perturbations in the near field. On the other 

hand high order schemes based on the defect correction principle should also be 

incorporated into existing software with the possibility of sub-grid modelling based on 

the investigation in Chapter 5 allowing an easy approach to LES-like methods. By 

implementing this within the CFD commercial software, it would bring computational 

benefits. Exploring into other industrial related problems, involving multiscale and high 

order schemes, where the use of the DCM framework can be expanded. 

 

 



78 

 

REFERENCES 
 

[1] Auzinger, W., Koch, O. and Weinmuller, E., “New Variants of Defect Correction for 

Boundary Value Problems in Ordinary Differential Equations”, Vienna University of 

Technology, ANUM Preprint, 2002 

[2] Baysal, O., Yen, G.W. and Fouladi, K., “Navier-Stokes Computations of Cavity 

Aeroacoustics with Suppression Devices”, AIAA/DGLR Paper 92-02-161, 1992 

[3] Böhmer, K., “Defect Corrections via Neighbouring Problems”. I. General Theory. 

MRC Report, University of Wisconsin-Madison No. 1750, 1977 

[4] Böhmer, K., “Discrete Newton Methods and Iterated Defect Corrections”, I. General 

Theory, h. Initial and Boundary Value Problems in Ordinary Differential Equations. 

Berichter Nr.10,11, Universitat Karlesruhe, Fakultät für Manthematik, 1978 

[5] Böhmer, K., “Discrete Newton Methods and Iterated Defect Corrections”, Numer. 

Math.37, 167-192, 1981 

[6] Böhmer, K., and Stetter, H.J., editors. “Defect Correction Methods: Theory and 

Applications”, Springer-Verlag, Wien, 1984 

[7] Breuer, M., “A Challenging Test Case for Large Eddy Simulation: High Reynolds 

Number Circular Cylinder Flow”, International Journal of Heat and Fluid Flow 21, 

648-654, 2000 

[8] Ciardi, M., Sagaut, P., Klein, M. and Dawes, W.N., “A Dynamic Finite Volume 

Scheme for Large-Eddy Simulation on Unstructured Grids”, Journal of 

Computational Physics, 210, pp. 632-655, 2005 

[9] Djambazov, G.S., Lai. C.–H., and Pericleous, K.A., “Development of A Domain 

Decomposition Method for Computational Aeroacoustics”, in Bjørstad, P.E., 

Espedal, M.S. and Keyes, D.E., editors, Domain Decomposition Methods in Science 

and Engineering. John Wiley & Sons, 1997. Proceedings from the Ninth 

International Conference, Bergen, Norway , June 1996 

[10] Djambazov, G.S., Lai, C.–H., and Pericleous, K.A., “Efficient Computation of 

Aerodynamic Noise”, in Mandel, J., Farhat, C. and Cai, X.–C, editors, Tenth 



79 

 

International Conference on Domain Decomposition Methods, pp. 506-512. AMS, 

Contemporary Mathematics 218, 1998 

[11] Dubsky, J., “Aeroacoustic Noise From A Car Sunroof”, MEng Project, University of 

Exeter, 2003 

[12] Dutt, A., Greengard, L., Rokhlin, V., “Spectral Deferred Correction Methods for 

Ordinary Differential Equations”, BIT, 11, No. 2, pp. 241-266, 2000 

[13] Ervin, V., Layton, W., Maubach, J., “Adaptive Defect Correction Methods for 

Viscous Incompressible Flow Problems”, SIAM J. Numer. Anal., 37, pp. 1165-1185, 

2000 

[14] Ervin, V., Lee, H.K., “Defect Correction Method For Viscoelastic Fluid Flows at 

High Weissenberg Number”, Numerical Methods for Partial Differential Equations, 

Volume 22, Issue 1, pp. 145-164, 2006 

[15] Ewert, R. and Schroder, W., “Acoustic Perturbation Equation Based on Flow 

Decomposition via Source Filtering”, Journal of Computational Physics, Vol 188, 

Issue 2, 365-398, 2003 

[16] Ffowcs–William, J.E. and Hawkings, D.L., “Sound Generated by Turbulence and 

Surfaces in Arbitrary Motion”, Philosophical Transactions of the Royal Society of 

London, Vol. 264A, pp. 321-342, 1969 

[17] Ffowcs–William, J.E., “Hydrodynamic Noise”, Annual Review of Fluid Mechanics, 

Vol. 1, Issue 1, pp. 197-222, 1969 

[18] Fox, L., “Some improvements in the use of relaxation methods for the solution of 

ordinary and partial differential equations”, Proceedings of the Royal Society of 

London, A 190 (1020), 31-59, 1947 

[19] Frank, R., Ueberhuber, C.W., Iterated Defect Correction for the Efficient Solution of 

Stiff Systems of Ordinary Differential Equations”, BIT 17, 146-159, 1977 

[20] Green, G., “An Essay on the Application of Mathematical Analysis to the Theories 

of Electricity and Magnetism”, Printed by T. Wheelhouse, Nottingham, 1828 

[21] Gulick, W.L., “Hearing: Physiology and Psychophysics.”, Oxford Univ. Press, 

London and New York, 1971 



80 

 

[22] Hardin, J.C. and Lamkin, S.L., "Aeroacoustic Computation of Cylinder Wake Flow", 

AIAA Journal, 22 (1, pp. 51-57), 1984 

[23] Heinrichs, W., “Defect Correction for Convection Dominated Flow”, SIAM J. Sci. 

Comput., 17, 1082-1091, 1996 

[24] Hemker, P.W., Shishkin, G.I., Shishkina, L.P., “The Use of Defect Correction for the 

Solution of A Singularly Perturbed O.D.E.”, ZAMM • Z, angew. Math. Mech. Vol. 

77, No. 1, pp. 59-74, 1997 

[25] Hemker, P.W., Shishkin, G.I., Shishkina, L.P., “High-Order Time-Accurate Schemes 

for Singularly Perturbed Parabolic Convection-Diffusion Problems with Robin 

Boundary Conditions”, Computational Methods in Applied Mathematics, Vol. 2, No. 

1, pp. 3-25, 2002 

[26] Heywood, J., Rannacher, R., “Finite-Element Approximations of the Non-stationary 

Navier-Stokes Problem. Part 4: Error Analysis for Second-Order Time 

Discretization”, SIAM J. Numer. Anal., 2, 1990 

[27] Hsi, F.Q. and Perie, F., “Computational Aeroacoustics for Prediction of Acoustic 

Scattering”, Proceedings Second Computational Aeroacoustics workshop on 

Benchmark Problems, NASA CP 3352, pp. 111-117, 1977 

[28] Inagaki, M., Murata, O., Kondoh, T. and Abe, K., “Numerical Prediction of Fluid-

Resonant Oscillation at Low Mach Number”, AIAA Journal, Vol.40, pp. 1823-1829, 

2002 

[29] Kirchhoff, G.R., “Toward a Theory of Light Rays”, Annals of Physical Chemistry, 

Vol. 18, pp. 663-695, 1883 

[30] Koren, B., “Multigrid and Defect-Correction for the Steady Navier-Stokes 

Equations”, Applications to Aerodynamics, S. W. I. Track 74, Centrum voor 

Wiskunde en Informatica, Amsterdam, 1991 

[31] Labovschii, A., “A Defect Correction Method for the Time-Dependent Navier-

Stokes Equations”, Numerical Methods for Partial Differential Equations, Volume 

25, Issue 1, pp. 1-25, 2009 

[32] Lai, L.S., Lai, C.–H., Pericleous, K.A., Djambazov, G.S., “Comparison of Higher-

Order Numerical Schemes and Several Filtering Methods Applied to Navier-Stokes 



81 

 

Equations with Applications to Computational Aeroacoustics”, Journal of 

Algorithms and Computational Technology, 3 (3), 443 – 459, 2009 

[33] Lallemand, M.–H., Koren, B., “Iterative Defect Correction and Multi-grid 

Accelerated Explicit Time Stepping Schemes for the Steady Euler Equations”, SIAM 

Journal on Scientific Computing, vol. 14, Issue 4, 1993 

[34] Launder, B.E., Reece, G.J. and Rodi, W., “Progress in the Development of a 

Reynolds Stress Turbulence Closure”, J. Fluid Mech., 68, 537-566, 1975 

[35] Launder, B.E. and Spalding, D.B., “Mathematical Models of Turbulence”, Academic 

Press, 1972 

[36] Layton, W., Lee, H.K., Peterson, J., “A Defect Correction Method for the 

Incompressible Navier-Stokes Equation”, Applied Mathematics and Computation, 

Vol. 129, Issue 1, pp. 1-19, 2002 

[37] Lighthill, J.M., “On Sound Generated Aerodynamically. Part I Generally Theory”, 

Proceedings of the Royal Society, Vol. 211A, pp. 564-587, 1952 

[38] Lilley, G., “On the Noise from Jets”, AGARD CP-131, PP. 13.1-13.10, 1974 

[39] Liu, Q. and Hou, Y., “A Two-Level Defect-Correction Method for Navier-Stokes 

Equation”, Bulletin of the Australian Mathematical Society, Vol. 81, Issue 03, 442-

454, 2010 

[40] Manoha, E., Elias, G., Troff, B., Sagaut, P., “Towards the Use of Boundary Element 

Method in Computational Aeroacoustics”, AIAA Paper 99-1980, 1999 

[41] Moeng, C.-H. and Sullivan, P.P., “Large Eddy Simulation”, Encyclopedia of 

Atmospheric Sciences, pp. 1140-1150, 2002 

[42] Minion, M.L., “Semi-Implicit Projection Methods for Incompressible Flow Based on 

Spectral Deferred Corrections”, Appl. Numer. Math., 48(3-4), 369-387, 2004 

[43] Nieuwstadt, F.T.M., Mason, P.J., Moeng, C.-H., and Schumann, U., “Large Eddy 

Simulation of the Convective Boundary Layer: A Comparison of Four Computer 

Codes”, in Durst et al., Turbulent Shear Flows, Vol. 8, Springer-Verlag, Berlin, 431 

pp., 1993 



82 

 

[44] Orszag, S.A. and Patterson, G.S., “Numerical Simulation of Turbulence: Statistical 

Models and Turbulence”, Lecture Notes in Physics 12, 127-147, Springer-Verlag, 

Berlin, 1972 

[45] Patankar, V., “Numerical Heat Transfer and Fluid Flow”, Hemisphere, Washington, 

DC, 1980 

[46] Pereyra, V., “On Improving the Approximate Solution of a Functional Equation by 

Deferred Corrections”, Numer. Math, 8, pp. 376-391, 1966 

[47] Pereyra, V., “Iterated Deferred Correction for Nonlinear Boundary Value Problems”, 

Numer. Math, 11, pp. 111-125, 1969 

[48] PHOENICS, www.cham.co.uk 

[49] Pilon, A.R. and Lirintzis, A., “Development of an Improved Kirchhoff Method for 

Jet Aeroacoustics”, AIAA Journal, Vol.36, pp.783-790, 1998 

[50] PowerFLOW & PowerACOUSTICS, www.exa.com  

[51] Qin, Y., Zeng, D. and Wu, K., “A Defect-Correction Method Based on Equal-Order 

Finite Elements for the Incompressible Flows”, Multimedia Technology (ICMT) 

International Conference, pp 2351 – 2354, 2011 

[52] Ricot, D., Maillard, V. and Bailly, C., “Numerical Simulation of the Unsteady Flow 

Past a Cavity and Application to the Sunroof Buffeting”, American Institute of 

Aeronautics and Astronautics, 2001-2112, 2001 

[53] Rossing, T.D., “The Science of Sound”, Addison-Wesley, Reading, Massachusetts, 

1982 

[54] Sagaut, P., “Large Eddy Simulation for Incompressible Flows – Third Edition”, 

Springer, ISBN 3-540-26344-6, 2006 

[55] Shih, S.H., Hamed, A., and Yeuan, J.J., “Unsteady Supersonic Cavity Flow 

Simulation Using Coupled k-e and Navier-Stokes Equations”, AIAA Journal, Vol. 

32, No.10, pp. 815-913, 1994 

[56] Stetter, H.J., “Economical Global Error Estimation”, R. A. Willoughby (Ed.), Stiff 

Differential Systems, pp. 245-258, 1974 

[57] Stetter, H.J., “The Defect Correction Principle and Discretization Methods”, Numer. 

Math. 29, 425-443, 1978 



83 

 

[58] Stevens, S.S. and Davis, H., “Hearing: Its Psychology and Physiology.”, Wiley, New 

York, 1938, American Institute of Physics, New York, reprinted 1983 

[59] Tam, C.K.W., “Computational Aeroacoustics: An Overview”, RTO AVT 

Symposium on “ Ageing Mechanisms and Control: Part A – Developments in 

Computational Aero- and Hydro-Acoustics”, 2001, RTO-MP-079 

[60] Vasilyev, O.V., Lund, T.S., and Moin, P, “A General Class of Commutative Filters 

for LES in Complex Geometries”, Journal of Computational Physics, 146, 82-104, 

1998 

[61] Viswanathan, K. and Sankar, L.N., “Toward the Direct Calculation of Noise: 

Fluid/Acoustic Coupled Simulation”, AIAA Journal, Vol. 33, No.12, pp 2271-2279, 

1995 

[62] Wang, Z.K., “A Source-extraction Based Coupling Method for Computational 

Aeroacoustics”, Ph.D. Thesis, University of Greenwich, 2004 

[63] Wang, Z.K., Djambazov, G., Lai, C.-H. and Pericleous. K., “Numerical Simulation 

of Flow-Induced Cavity Noise in Self-Sustained Oscillations”, Comput Visual Sci 10, 

pp 123-134, 2007 

[64] Wilkinson, J.H., “Rounding Errors in Algebraic Processes”, Englewood Cliffs, NU: 

Prentice Hall, 1963 

[65] Wood, A.B., “A Textbook of Sound”, Bell, London, 1946 

[66] Zadunaisky, P., “A Method for the Estimation of Errors Propagated in the Numerical 

Solution of a System of Ordinary Differential Equations”, G. Contopoulus (Ed.), The 

Theory of Orbits in the Solar System and in Stellar Systems. Proceedings of 

International Astronomical Union, Symposium 25, 1964 

[67] Zadunaisky, P., “On the Estimation of Errors Propagated in the Numerical 

Integration of Ordinary Differential Equations”, Numer. Math. 27, 21-39, 1976 

 


