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Abstract

This paper presents innovative work in the
development of policy-based autonomic computing.
The core of the work is a powerful and flexible policy-
expression language AGILE, which facilitates run-time
adaptable policy configuration of autonomic systems.
AGILE also serves as an integrating platform for other
self-management  technologies  including  signal
processing, automated trend analysis and uiility
Junctions. Each of these technologies has specific
advantages and applicability io different types of
dynamic adaptation,

The AGILE  platform  enables  seamless
interoperability of the different technologies to each
perform various aspects of self-management within a
single application. The various technologies are
implemented as object components. Self-management
behaviour is specified using the policy language
semantics to bind the various components together as
required. Since the policy semantics support run-time
re-configuration, the self-management architecture is
dynamically composable. Additional benefits include
the standardisation of the application programmer
interface, terminology and semantics, and only a single
point of embedding is required.

1. Introduction

Autonomic computing has risen over recent years to
become a key research area in computer science. This
is largely because the functionality and scale of
deployed software systems are following rapidly
increasing trends. In many cases behavioural
complexity now exceeds timely human comprehension
and is thus a barrier to correct and optimised
configuration of applications [1]. Impacts include
longer development time, increased operational costs,
reduced effectiveness, and higher occurrence of errors.

The field of autonomics is fundamentally concerned
with the avoidance, removal or hiding of complexity.
There are many different technologies being deployed
to solve various problems in a variety of ways. Some
of these sclutions are very sophisticated, involving
artificial neural networks, genetic algorithms ete, to
achieve some degree of automatic learning. Other
techniques can achieve context-aware behaviour
despite their simplicity, for example utility functions.
Some of the technologies offer greater potential
‘behavioural intelligence’ but are less generic, whilst
others are more flexible and have wider applicability,

Each technology has different advantages and thus
collectively they cover a very wide range of
possibilities. This rich tool choice is driving the
proliferation of autonomic solutions. However, current
shortcomings in autonomics include the lack of a
standardised development approach and a lack of
interoperability across technologies. The various
technologies are almost always used in isclation, the
most appropriate single technology being chesen
although  many  application  domains  have
characteristics or requirements that straddle the
provision of several technologies and are not ideally
satisfied by a single technology.

On the other hand, developing systems with several
different, incompatible technologies can actually
represent an increase in complexity which is evidenced
when it comes to deployment, versioning and upgrades
etc. and thus represents risk. The author refers to this
as ‘complexity tail chasing’, i.e. one dimension of the
complexity problem is solved by adding complexity in
a different dimension.

This paper presents AGILE, which serves as both a
policy expression language and a framework that
facilitates the integration and dynamic composition of
several autonomic computing techniques and
technologies. The combination of these technologies
offers potentially far greater flexibility and paowerful
adaptation than when the technologies are used



separately. The framework represents a move towards
a standard approach with the key benefit of
interoperability across different autonomics techniques,
which are combined together within a single
deployment technology.

Policy-based computing has been chosen as the
overarching technology for the framework because it
has arguably the most flexibility and general
applicability amongst the currently popular autonomics
approaches; and thus offers the greatest potential to
serve as a unification infrastructure for self-
management. Specifically the following strengths are
identified: 1. A policy can be used to express both
structure and a sequence of logical steps to be
followed, and is thus an ideal basis for composition. If
the policy scheme supports dynamic self-adaptation,
then the composition of behaviours can itself be
dynamic. 2. In comparison with the other techniques,
policies are relatively simple to develop and test, which
translates into lower risk and cost. 3. The policy
remains external to the embedded implementation
mechanism, so even if a run-time static policy is used
the system’s behaviour can be subsequently modified
without changing the code-base or its deployment. 4.
The explicit decoupling between the business logic and
the implementation mechanism makes policy schemes
a feasible choice for deployment into legacy
applications; with less effort than the other self-
management techniques. 5. A policy can express high-
level intentions, without concern for how they are
achieved, and thus can be used to achieve dynamic
adaptation by mnon-experts in self-management, 6.
Policy schemes have low run-time resource
requirements, which is an important consideration for
mobile devices and embedded systems with limited
resources, 7. In some applications policies can have re-
usable aspects (for example a particular rule might be
shared by several policies), reducing development
time.

2. Supported self-management techniques
2.1 Templates and Policies

A comprehensive review of the various approaches
to policy-based computing, with detailed comment on
the current state of the art, has been provided in {2].
For completeness, a brief overview and update is
provided here.

Templates: A template is the simplest type of
‘policy’, consisting only of configuration settings that
are loaded at application initialisation. Internally there
may be embedded policy logic comprising rules and
actions etc, but the actual logic is fixed. Behaviour is
thus fixed for any particular execution instance.

Behaviour can be modified betweern executions but the
extent of the modification is limited to changes to the
parameters that constitute the template. [3] Embeds
fixed rules into agents. Other examples are found in [4]
and [5].

Statically configured policies: This category
represents a more flexible approach than templates,
because both the configuration parameters and the
actual decision rules are held externally to the
embedded mechanism. Although the behaviour can
only be changed between executions, it is possible to
update the actual logic of the policy as well as its initial
parameterisation. A pilot study in {6], found that this
style of policy-based configuration tended to have
higher overall effectiveness in comparison to manual
configuration. An example is provided by the Policy
Description Language (PDL) [7], which is an event-
driven programming language. Distributed Action
Plans (DAP) are used to specify distributed network
management tasks. DAPs are executed by policy
agents which are specified in PDL [8].

The problem of identity delegation when policies
are submiited by users is investigated in [9]. An
intelligent delegation agent is used to determine the
appropriate security authorisation for given policy.

Policy schemes supporting open-loop adaptation:
The policy or its support mechanisms indirectly
support adaptation of the actual policy. This support is
in terms of identifying, or facilitating the identification
of, inefficiencies in, or conflicts between, policies. The
policy behaviour remains fixed during the current
execuiion instance. The user is notified and manually
updates the policy between executions. IBM
Research’s Policy Management for Autonomic
Computing (PMAC) [10] provides an automated policy
management and deployment application to assist with
the manual policy updates. Policy Schedule Advisor
[11] is a utility that assists in the refining of a policy
schedule to ensure efficient execution on the PMAC
middleware. The Unity policy environment
‘Policyscape’ [12] provides a set of ‘templates’ that
can be used as building blocks to create more-complex
policies and supports automated policy creation.

Policy schemes supporting closed-loop self-
adaptation: The policy or its support mechanisms can
automatically adapt the policy’s own behaviour to suit
contextual or environmental circumstances. The
dynamic adaptation is achieved in a variety of ways
and to a wide variety of extents. Ponder [13] is a
sophisticated policy specification language with a
feature-rich grammar that approaches the complexity
of a conventional programming language [14]. Ponder
is adaptive in the sense that meta-policies define
semantic constraints on the regular policies. A security
policy implementation described in [15] uses a meta-



policy to dynamically select between security policy
versions, but policy updates are performed manually
by administrators (although this can occur during run-
time). Further examples of short-term adaptation are
found in [16] in which event-trigger conditions are
dynamic, and [17] in which conflicts between the
obligations of security policies are automatically
detected and resolved at run-time by dynamically
removing conflicting  obligations under certain
circumstances. Similarly, the language described in
[18] supports automatic detection and resolution of rule
conflicts. The AGILE policy expression language has
been purposefully designed to be highly flexible in
terms of dynamic self-reconfiguration to facilitate
context aware behaviour in a wide variety of
application domains. It achieves dynamic self-
adaptation in several ways which are discussed in
section 3,

2.2 Data aggregation and signal processing

Typically in dynamic systems the current context
cannot be completely determined solely from
instantaneous values from environmental sources such
as sensors. More likely, it is necessary to consider
characteristics of the recent sequence of samples, such
as mean values and counts of events such as the
number of spikes or other anomalies detected over a
certain time frame. Data aggregation and signal
processing techniques, collectively referred to from
this point on as Signal Processing (SP), provide a
temporal association on top of discrete samples of
environmental conditions.

2.3 Trend Analysis

Within the information supplied directly by an
environmental input, or resuiting from SP, there can be
various trends which can be identified. Typical patterns
that are of interest in autonomic systerns include: rising
/ falling trends, stable values (showing no significant
change over several samples), and step changes (abrupt
and significant changes in value). By deploying an
automatic Trend Analyzer (TA), a policy or other
technology can base decisions on a more-complete
view of the current system behaviour, Most
significantly, the analysis of current or recent trends
enables prediction of the short-term future. The
importance of TA and prediction to self~management
are discussed in depth in [19].

2.4, Utility functions

A Utility Function (UF) provides a means of
choosing from several options, each expressed as a
series of weighted terms. The term values are supplied

by environment sensors and the weights are set
(possibly dynamically} to reflect the application’s
interpretation of utility. The products of each term and
its associated weight are combined to determine the
instantaneous merit of each option. This technique
allows context-sensitive decisions to be made
dynamically with quite low implementation
complexity. The versatility of UFs is illustrated by a
brief review of several diverse examples: An emergent
graph colouring algorithm [20] uses a UF to escape
from illegal configurations which occur when all of a
given node’s neighbours are themselves legally
coloured but there is no spare colour available for the
node to colour itself without a clash. The UF is used to
choose those neighbour(s) that must be forced to
change colour such that the extent of the knock-on
effect disturbance is minimised. In [21] 2 UF is used to
dynamically select between context providers based on
their various QoS parameters in an adaptive
middleware that supports context-aware applications.
UFs can be used as the basis for trading in simulated
economic systems. The UF determines the price for
which a particular agent is prepared to offer a service,
or the price an agent will pay for a service, taking
contextual factors into account. See for example [22].
Various different UFs can be used concurrently within
the same system to solve quite challenging problems.
For example [23] applies UFs to the optimisation of
computing-resource allocation in data centres. UFs are
used in two ways: individual autonomic elements apply
service-level functions to optimise application resource
usage; whilst at a higher level a system-wide arbiter
uses UFs configured by application managers to
allocate resources across the various application
environments.

2.5 Integration of techniques

Each technique described above has some specific
relative strengths over the others. Thus in combination
the technologies have the potential to yield far greater
benefit, in terms of flexibility, applicability and the
extent of dynamic adaptation achievable, than when
used in isolation. For example the SP and TA provide a
temporal aspect that UFs and policies do not naturally
have, Some of the benefits of combining specific
techniques are discussed:

Policies and UFs. Policies can express logic,
structure and sequence. Utility functions are a simple
yet powerful way of making complex decisions based
on the combination of several factors, each weighted to
reflect current importance. Utility functions can choose
between a large number of options whilst rules in
policies tend to have a boolean outcome. So a policy is
useful to express overall business logic, and a utility



function offers a means of making coniext-aware
optimal choices at specific decision points. In
combination a policy could dynamically configure a
UF (by setting the various weight values), and then
invoke it. Alternatively, a UF could be used within a
meta-policy to determine the instantaneously most
beneficial business policy to use, based on a number of
environmental parameters. An example of embedding
UFs into a policy-based system is found in [24].
Policies and SP. SP treats discrete input values as a
related stream, generating useful attributes such as
mean, mode, or median, and identifying features such
as noise levels within the data. This can greatly
simplify the amount of work to be done within the

policy itself, and facilitates more ‘intelligent’
decisions.
Policies and TA. The predictive capability

introduced by TA enables a policy to be proactive,
rather than purely reactive if working with
instantaneous values or the output of a SP.

SP and UFs. The ability of an UF to make context-
aware decisions and select between a number of
options is greatly enhanced if the attributes provided
by a SP are available to it, rather than just the raw data
inputs. For example, in a multi-sensor system it would
be possible for a UF to select the most reliable sensor,
identify anomalies in readings, and even to detect a
faulty sensor by taking into account mean values, noise
levels, and fluctuations in the values provided by each
SENsor.

TA and UFs. An UF’s ability to select the best
option from a choice of many is dependent on the
amount and quality of information available to it. TA
enables the UF to take into account short-term
predictions. For example two resources might have the
same instantareous capacity, but choosing between
them is simplified if it is known that one has a rising
trend in load level whilst the other has a falling load
trend.

3. The AGILE policy expression language

The advanced concepts for policy-based avtonomics
presented in [2] have been implemented in a
sophisticated  policy scheme named AGILE;
comprising a feature-rich policy expression language, a
powerful implementation library and a simple-to-use
API. This policy scheme boasts a number of advanced
and novel features, some key examples of which are
described below using policy script excerpts for
illustration. The discussion relates to the features of
AGILE version 1.2,

1. Templates are used in three different ways. Firstly
to provide initial policy configuration; an example is
shown later in this section. Secondly to ‘reset’ a self-

adapted policy back to a known state. Thirdly,
templates can be dynamically created through a policy-
state persist mechanism, such that the new template
serves as a ‘checkpoint’ of current adapted state and
can be used to “warm start’ new policy instances.

2. Dynamic self-adaptation of policies. The policy
can change its own behaviour through the use of
indirect addressing at the policy-script level, so that the
actual variables that are compared in a rule, or the
action to be followed on the outcome of a particular
rule, can be changed dynamically. For example,
variables of type PolicyObject can be declared:

<IVariable Name="ActionName" Type="PolicyObject"/»

* «IVariable Name="FirstVAR" Type="PolicyObject"/>
<IVariable Name="SecondVAR® Type="PoclicyObject"/s

Their values can point to any policy objects, using a
template to provide initial configuration for example:
<Template Name="T1"x>
<Assign Variable="pActicnName" Value="RuleABC"/>
<Assign Variable="FirstVAR" Value="vVarl"/s
<Assign Variable="SecondVAR" Value="Var2"/s
</Templates
With this particular configuration the following rule R1
compares Varl and Var2, and if equal executes
RuleABC (because ‘ActionName’ points to it):
<Rule Name="R1"
LHS="FirstVAR" Op="EQ" RHS="SecondVAR"

actionIfTrue="ActionName"
ElseAction="null"/>

This logic can be re-configured dynamically to suit
execution context. For example, a rule elsewhere in
the policy might execute action block Al:
<Action Name="Al"s
<Assign LHS="ActionName" RHS="RuleX¥Z'/»
<Assign LHS="FirstVAR" RHS="Varit/»>
<Assign LHS="SecondVAR" RHS="Var4"/»
</Action>
This changes the behaviour of rule R1, when next
evaluated (as ‘ActionName’ now points to RuleXYZ).
Rules (and some other types of objects) each have a
Boolean guard property whose value can be changed
dynamically. If the guard is “false’ the rule is skipped.
This provides a simple means of changing rule
execution sequences dynamically, and allows rules to
operate either in the event+condition—action mode
(the guard provides the condition), or by leaving the
guard at its default true state, rules operate on the
simpler eveni—action basis. For example the following
action A2 evaluates rule R1 and then R2 by default:
<Action Name="A2">
<EvaluateRule Rule="R1"/>
<EvaluateRule Rule="R2"/>
</Actions
The assign statement below causes R1 to be skipped,
so that action A2 (in the future) will evaluate R2 only:

<Assign LHS="Rl:Guard” RHS="false"/>



3. The policy language is object oriented, enabling
re-use of variables, rules and other components. For
example, several actions may reference the same rule.

4. Policies can ‘yield’, i.e. transfer control, to
another policy. This facilitates dynamically switching
the active business policy based on appropriateness to
run-time context. Control can be handed to a specific
policy, (such as Policyl in the following example):

<Yield Policy="Policyl™/>

Policy selection can be dynamic, to support context-
sensitive decisions. The target policy name is held in a
PolicyQObject type variable, which is declared as:

<IVariable Name="PolicyName" Type="PolicyCbject"/>

The new policy is chosen by the current policy logic.
Subsequently, the current policy yields to whatever
policy is referenced by the PolicyName variable:

<hssign LHS="PolicyName" RHS="Policy2"/s

<Yield Policy="PolicyName"/>

Policies are switched ‘hot’; i.e. all objects retain their
state during the policy swap. In the typical case where
policies share some objects such as rules and variables,
the new policy picks up where the other left off and the
switch is transparent to the controlled system.

5. The language directly supports self-stabilising
behaviour. The tolerance-range-check object (TRC)
encapsulates dead-zone logic and a three-way decision
fork within a single policy component. A key use of
the TRC is to reduce oscillation. Consider a system in
which it is necessary for the system state to track a
dynamic goal, whilst minimising oscillation due to lag
and overshoot. A typical TRC configuration is shown;

<TRC Name="DZ"

Check="CurrentValue" Compare="GoalState"
Tolerance="AcceptableDeviation”
ActionInZone="null* ActionLower="ActIncrease"
ActionHigher="ActDecrease"/»
The Check, Compare and Tolerance parameters
represent respectively: current system state; goal state;
and acceptable deviation from goal state (i.e.
deadzone). Separate actions can be specified for each
outcome with respect to the Check variable, i.e. in,
lower, or higher than the dead-zone. Figure 1 depicts
the use of a TRC to enhance stability.
Dead-zone
upper bound

Goal state

Dead-zone
fower bound

Ini:ial — Trajectory with dead-zone
system -+ Trajectory wilhoul dead-zcne

Scme measured characteristic
of system or environment

[ SlatIe 1 1
(Cldest) {Latest)
Figure 1. Using a TRC whilst tracking a dynamic goal state
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As with rules, TRCs have a Boolean guard
contributing to dynamic orchestration of evaluation
sequences. Also like rules, TRCs c¢an use indirect
addressing for variable and action parameters. Thus the
policy can dynamically reconfigure the TRC; for
example sensitivity can be adjusted by changing the
tolerance parameter to suit context.

6. Run-time diagnostics are provided; a text log is
written after each policy invocation showing the
sequence of logical steps taken {(an example is
provided in section 4.3).

7. Policies, once loaded via the API, retain state
between invocations. This enables a temporal
relationship to be established at the level of the policy,
for example to allow reasoning about a sequence of
events that span several invocations (see the examples
presented in sections 4 and 3).

4, The integration framework

At the highest level, the framework is seen by
systems developers as an extensive policy-based
computing toolkit. The fundamental interaction with
the framework occurs through the preparation of
AGILE policy scripts, and through the integration of
the implementation library with application code, by
using the AGILE API.

However, the framework also integrates several
autonomic computing technologies in a modular
fashion within a single deployment architecture, The
potential benefits of the combinatorial use of these
different techniques have been discussed in section 2.5
above. Additional benefits of the framework include
the standardisation of the application programmer
interface, terminology and semantics, and only a single
point of embedding is required.

Section 3 above has described the policy expression
language aspect of AGILE. The remainder of this
section focuses on the other technologies and their
integration within the framework. Each technology is
implemented as a modular component which can be
connected to other components to form whatever
logical structure is required.

4.1 Signal processing

The AGILE library automatically performs SP. This
has been included to vastly increase the flexibility and
expressive power of AGILE policies without any effort
on the part of either the policy writer or the application
developer. The SP logic is attached to each numeric
variable and silently monitors successive sample
values. This enables reasoning within policies to
incorporate temporal characteristics of an input stream,
such as mean value, largest value, etc. The various



temporal characteristics are represented as properties
of their respective variable, and represented in policy
scripts in the form object:property. Thee properties can
be directly incorporated into policy logic. For example
the following rule, R3, tests whether the exponentially
smoothed mean of variable Varl is greater than the
maximum observed value of variable Var2,

<Rule Name="R3"

LAS="Varl:ExpMean02"™ Op="GT"

RHS="Var2:MaxValueSeen" ActionlfTrue="ScmehAction*
ElseAction="OtherAction"/>

AGILE supports self-adaptation at several levels.
The varicus ways that dynamic configuration can be
achieved at the level of policies has been discussed in
section 3, However the SP component is also capable
of automatic internal self-adaptation in two important
ways:

Automatic defermination of noise level. The
‘noise level’ implies the natural level of deviation
between values in the input stream which does not
indicate an interesting event. Noise level is measured
as double the mean of absolute deviations between
successive samples, omitting samples where a spike (or
other characteristic recognisable by the TA - see later)
begins or ends, which would significantly affect the
accuracy of the approach. The mean is determined by
exponential smoothing with a smoothing constant o =
0.1 {the weight associated with the latest deviation).
The resulting value is assigned to the noise level
property of the appropriate variable (i.e. for variable
Varl this is vari:NoiseLevel). This property is used
directly by the TA during the process of identifying the
beginning of a spike or other feature within the input
pattern. As with other properties, NoiseLevel can also
be directly manipulated within a policy or can form
part of the input to a utility function.

———— Noisa level .
30 - - —- Nolsa band upper [mt
------- hoise band low er limt

Nomerical value
=

This anomaly remaing
within the neise band

Lag due to
axponential
smoothing

This anomaly breaks out of the
ncise band, and subsequently
is classified as a spike

1 g 1" 16 Fal 2 A 38 4 46 51
Input gample number

Figure 2. Automatic tracking of noise level within the SP

Figure 2 illustrates the operation of the automatic
noise level determination facility. The upper and lower
noise-band limits are shown to illustrate how the noise
leve! property can be utilised by further stages, such as
the TA. Noise level tracking enables the anomalies to
the left and centre of the figure to be classified as
uninteresting, whilst the anomaly to the right is

identified as a spike.

Automatic determination of step characteristics,
A signal that emerges from the noise band is initially
identified as a spike. However, it is important to be
able to determine at what point the spike becomes a
step, i.e. the change in behaviour is considered
permanent in the short time frame and the system
should respond to it. A system needs to be able to
perform this identification otherwise it must treat all
spikes and steps alike, which can lead to inefficient and
unstable oscillatory behaviour if spikes are frequent.
For example in resource management, steps in an
application’s demand level require a reallocation of
resources. However, if the pattern that is treated as a
step is in fact a spike (i.e. a short-lived fluctuation) the
work of reallocating resource is wasted. If such spikes
occur frequently and are not detected as such the
system is at best inefficient and possibly unstable. This
problem is discussed in some detail in [25].

The SP component uses a per-variable configuration
property StepMinimumWidth to set the lower threshold
value for the number of samples that constitute a step.
The property has a default value of 5 and is not
changed automatically; i.e. the algorithm described
below treats this value as an absolute lower limit.
However it can be assigned a value from within the
policy script, e.g. (for variable Varl):

<Assign Variable="varl:StepMinimumWidth" Value="3"/>

An anomaly that ends before this count is reached is
classified as a spike.

The automatic adjustment algorithm takes into
account the step duty-cycle (the proportion of data
samples that constitute steps). The duty-cycle is
computed by exponentially smoothing observed step-
widths (with smoothing constant a = 0.2). The same
smoothing is applied to inter-step gaps.

If the mean duty cycle is greater than 33% i.e. one
third of the time or more is spent in (non-continuous)
steps, then the system is in danger of oscillating. The
problem is more significant when the actual step-
widths are short; yielding less benefit from each
change of behaviour. Thus a second level of reasoning
is applied, comparing the exponentially smoothed
mean step-width value (which by its nature puts greater
emphasis on recent values) against the minimum
acceptable step-width value. When both problem
indicators are present (the duty cycle is high and also
the mean step-width is marginal, i.c. there are a high
number of steps close to the minimum width), the SP
component automatically increases the minimum step
width (so that the classification is tightened, and
marginal-width steps are now classified as spikes).
This is achieved by incrementing an offset value which
is added to the stepMinimumwidth property. This offset



is likewise decremented (but cannot drop below zero)
when the system is more stable; i.e. a duty cycle of less
than 17% (1 in 6). Further adjustments can be made
until the system reaches a stable state. To ensure that
these adjustments themselves do not cause instability,
the system does not make adjustments more frequently
than once every three steps it encounters, to ensure that
the effects of previous changes have a chance to take
effect.
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Figure 3. Automatic adaptation of step classification
threshold

Figure 3 illustrates this dynamic adaptation
behaviour. The example shown is taken directly from
one of the implementation library’s programatic
correctness tests of adaptive behaviour. For the
relevent variable, the stepMinimumwidth property was
initialised to the value three in the test policy script,
and the dynamic offset was internally set to zero in the
library. In combination these values determine the
subsequent classification of anomalies. A number of
closely bunched anomalies (labelled A — J) threaten
stability. The mechanism detects (after anomaly F) that
a sequence of marginal-width steps is occuring in close
succession, and responds by temporarilly incrementing
the threshold number of consecutive samples within a
spike needed for it to be re-classified as a step. The TA
subsequently classifies ancmalies of up to three
samples wide as spikes {effectively downgrading the
short steps (G, H, K and M) and re-gaining stability.
When the duty-cycle between recognised steps has
fallen back to a sustainable level the threshold is
decremented. Anomalies C and Q are less than 3
samples wide so are always classified as spikes.
Anomalies I, L. and N have sufficient width to be still
classed as steps after the threshold has been raised.

Together these two dynamic internal adaptations
support self-stabilisation and optimization, and operate
independently on each variable defined in a policy.

There will be situations where it remains desirable
to manually set the noise level and/or spike/step
crossover point, instead of automatically adjusting
them. Therfore these features are disabled by default
and must be enabled by assigning the value *true’ to
the appropriate property on specific variables. This can

be achieved in a template, as shown below, or
dynamically from within an action block:
<hssign Variable="Varl:AutoHNoiseLevel"
Value="true"/>

<Assign Variable="Varl:AutoSpikeWidth"
Value="true"/>

4.2 Trend analysis

This component provides more-complex temporal
analysis than the SP. The TA automatically ¢lassifies
the higher-level patterns within an input stream, as
shown in figure 4.
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Figure 4. Trends identified by the trend analyzer

The TA differentiates between positive and negative
spikes, and similarly between positive and negative
steps. The recognition of ‘stable’, ‘rising’ or ‘falling’
trend requires a sequence of consecutive samples lying
within the noise band. The three states are
distinguished by examining the difference between
values offset by 10 samples. Once the ‘stable’ trend
has been detected, the mean signal value becomes the
new norm from which deviation is measured. Hence
the sudden drop (at point X) in the centre-right of the
lower trace is identified as a negative spike.

The current trend for a specific variable is accessible
within policies via the Trend property. For example the
rule R4, “if variable X has a rising trend do Action_Y?
is expressed as:

<Rule Name="R4"™ LHS="X:Trend" Op="EQ" RHS="Rising"
ActionIfTrue="Action _Y" ElseAction="null™/>

By implementing TA in the library, as a policy-
composable component, the analysis can be performed
on all variables, including external variables that
provide environment sensing information, and internal
variables that are used as counts, thresholds etc. No
implementation is required within the actual policy
script or within the host application; all the work is
done silently within the implementation library.

4.3 Utility functions

The utility function (UF) component implements
summative UFs with a policy-specified number of
input terms per option line. The level of importance
attributed to cach input term is represented by the



weight value associated with the term. The weights can
be fixed or dynamic, in the latter case enabling an
application to determine the relative importance of
each input term based on current context. Term and
weight values can be provided by any oft
environmental variables passed into the policy; internal
variables such as threshold wvalues and counts of
events; properties generated by a SP component; or
numeric constants.

A single option | having N terms, is defined as:

Ui=(Wy * T+ (W ¥ Ta)+ ..+ (Wi * Ti)

where Wy, ... Wy are weights, Tj,... Ty are input terms
and U; is the resultant ‘utility’ attributed to the option,

Consider an application that has access to several
sensors that each monitor the same aspect of the
environment, thus providing a degree of redundancy.
The sensors might measure physical attributes of a
system such as pressure, temperature etc, or could
equally be information feeds coming conceming stock
prices or other financial information. Selection
amongst them should be made on a gualitative basis;
i.e. the selection is not concerned with the discrete data
values produced by the sensors, rather it is concerned
with characteristics of their output signals that are
indicative of stability, trustability and reliability. As
there are multiple qualitative measures for each signal,
the problem is ideally suited for solving with an UF.

To demonsirate the use of the policy framework in
this scenario, an evaluator tool was devised to facilitate
the insertion of controlled extents of noise and spikes
onto signals; thus enabling simulation of a range of
realistic environments.

Two signals are passed into the policy logic as
variables. The SP attached to each variable generates
two  quality measures (SpikeInterval and
NoiseLevel) . These values are fed as inputs inte an
UF; i.e. the quality of signal i is represented by the
tuple {7y, Tizy where T, = spikeInterval, and T); =
NoiseLevel

The evaluator tool passes the weight values into the
policy as variables W1 and W2, The results presented
below were generated with the weights set as follows:

W= Wi =1 (represented as W1 in the policy),

W= Wy =-12 (represented as W2 in the policy).
These weights were chosen to balance out the
numerical bias in the actual propertics generated by the
8P; effectively weighting the two characteristics as
being equally important. The weight value attributed to
the NoiseLevel property is negative because lower
values of noise equates to higher quality.

The UF determines which signal is ‘best’ by
computing the utilities: Uggerary and Uggwarz. The
policy is shown below:

<EnvironmentVariables>
<EVariable Name="S51" Type="long"/>
<EVariable Name="S2" Type="long"/>
<EVariable Name="W1" Type="long"/>
<EVariable Name="W2" Type="long"/>
</EnvironmentVariables>
<Templates>
<Template Name="T1">
<Assign Variable="81:AutoNoiseLevel"
Value="true"/>
<Assign Variable="852:AutoNoiseLeval"
Value="true"/>
</Template>
</Templates>
<ReturnValues>
<Returnvalue Wame="R_Signall” Value="1"/>
<Returnvalue Name="R_Signal2" Value="2"/>
</Returnvaluas>
<UtilityFunctions>
<UF Name="UFl" Terms="2">
<Opticn Action="R_Signall" Ti="Sl:SpikeInterval™
Wl="Wl" T2="51:Noiselevel" W2="W2"/>
<Cption Action="R_Signal2" Tl="S2:SpikelInterval™
Wl="{1l" T2="52:NoiseLevel" W2="W2"/>
</UF>
</UtilityFunctions>
<Bolicies>
<Policy Name="Pelicyl" Pe¢licyType="NormalPolicy">
<Load Template="T1"/>
<Execute Action="UF1"/>
</Policy>
</Policies>

The policy script combines three autonomics
technologies (policy, SP and UF) yet is itself very short
and simple. This is fundamentally because key features
such as SP and extensive run-time validation are
embedded in the library and operate automatically.
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Figure §. Dynamic, qualitative signal selection

Figure 5 shows a sample of the selection behaviour
of the UF. The ‘selected signal® trace indicates which
signal is attributed the highest “utility”: low indicates
signall, high indicates signal2, The system parameter
that the sensors were measuring was fixed at the value
30 throughout the experiment to aid clarity, as it is the
quality of the signals that is important, not their
specific instantaneous readings.

AGILE automatically generates a run-time trace
each time a policy is evaluated. These traces are
retrieved as a text string, via a method on the APL An
abridged run-time trace for the signal selection policy
is shown, corresponding to a single evaluatien



instance. Only properties updated in current evaluation
instance are listed in the trace.

Property: Obj=51 Prop=MinValueSeen val=15
Property: ObJj=S1 Prop=ExpMeant2 Val=43
Property: Qbj=S1 Prop=NoiseLevel Val=1
Property: Qbj=S1 Prop=Trend Val=8pikeNegative
Property: Qbj=52 Prop=ExpMean02 Val=49
Proparty: Obj=82 Prop=SpikeInterval Val=8
Property: Chj=82 Prop=NoiseLevel Val=2
Property: Obj=82 Prop=Trend Val=Unknown
Policy: Policyl Type: NormalPolicy

Load Template - Skipped (already loaded)
Action: UFl
UtilityFunction: UF1 Guard was True: Evaluated

Terms:2 Options:2
Variable: W1 Value: 1
Variable: W2 Value: -12

Utility values {15:R Signall}{-16:R_Signalz}
Selected Action:R_Signall
Action: R_Sigmall
Returnvalue: R_Signall
Property: Obj=S81 Prop=PreviousValue Val=15
Property: ObJi=S52 Prop=PreviousValue Val=58
The results (a sample are shown in figure 5) suggest
that the properties generated by the SP are sufficiently
reflective of the signal characteristics that the UF
manages to choose the cleanest signal under a range of

noise-level and spike occurrence conditions.
4.4 Integration and interoperability

The example application described in section 4.3
illustrates integration of three key components; policy,
SP and UF. The integration is more-clearly shown in a
composition diagram.
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Figure 6. Composition of component behaviours

The representation of composition in figure 6
highlights the function of, and the interconnection
between, components. The interfaces are standardized
so that the various components can be connected
together in a variety of ways to achieve a very flexible
range of behaviours with a relatively small number of
component types. The policy writer simply has to
compose the desired behaviour using policy logic to
bind the components as required.

In the application logic shown, the actual values of
variables S1 and S2 are not examined; instead
qualitative properties produced by the SP are fed
directly into the UF. The SP and TA are actually wired
to each numeric variable, but are only shown in cases
where they are used, to aid clarity.

To illustrate the flexibility of AGILE’s modular
integration approach, consider a version of the
adaptation example provided in section 4.3, but now
with stricter requirements on the selection of signals,
such that it is not sufficient to examine current
properties of the signals themselves (spikelInterval
and Noiselevel), but that it is necessary to examine
trends in these qualities. This more-sophisticated
scenario is facilitated by cascading Variable

components (and thus SP and TA), as shown in figure
7 (only the revised logic for one property is fully
shown).
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Figure 7. Cascading variables such that a TA identifies
trends in an SP-generated property. A rule then evaluates
the trend.

Noise § H Spike
Love! Infarval

The TA output is non-numeric so a rule is used to
check for adverse trends. Key additions to the policy
script, extending the example from section 4.3, are
shown below, Only the handling of signall! is shown
due to limited space.

<InternalVariables>
<IVariable Name="§lSpike" Type="long"/>
<IVariable Name="S51Noise" Type="locng"/>

<Action Name="Al">
<Assign LHS="S1Spike" RHS="Sl:SpikeInterval"/>
<Assign LHS="SlNoise" RHS="51:NoiseLevel™/>
<BEvaluateRule Rule="RuleSl"/>
<EvaluateRule Rule="RuleS2"/>
<EvaluateUF UF="UF1"/>
</Action>
<Rule Name="RuleSl"
LES="S1Spike:Trend" Op="EQ" RHS="Falling"
LOp="0OR" LHZ="51Noise:Trend" Op2="EQ"
RE2="Rising" ActionIfTrue="R_Signal2"
ElseAction="null"/>

<Policy Name="Policyl" PolicyType="NormalPolicy">
<Load Template="T1"/>
<Execute Action="Al"/>

</Policy>

The policy invokes Action-block Al instead of directly
inveking UF1. This enables a sequence of actions to be
specified: assign the appropriate SP-generated
properties to the new variables; invoke the new rules;
and if neither rule fires ‘true’ (and thus returns a
decision result), UF1 is invoked as before.

5. Dynamic composition

Sections 4.3 and 4.4 illustrate the case with which
the various components can be bound together; the
composition being expressed in the policy script itself.

Some applications operate in a wide variety of



contexts and their environments can exhibit variable,
and /for high velatility. Therefore there can be limits to
the correctness and optimality of a static policy under
certain circumstances,

However, due to the inherently dynamic
reconfigurability of AGILE (explained in section 3) it
is straightforward to write policies that are self-
adaptive; including the actual composition of
behaviours, i.e. the way in which the various
components are connected together and interact.

A few of the very many scenarios in which this is
useful include: Dynamically changing the relative
priority of rules or other actions (a common
requirement in security policies, but also important in
optimization and healing scenarios); Automatically
swapping between a conservative policy or rule
(suitable for turbulent environmental conditions), and a
more aggressive variant which can bring higher
dividends in more-stable conditions; and Automatically
detecting, and adjusting sensitivity to, differing levels
of noise and other characteristics of the environment
signals.

To demonstrate dynamic self-adaptation at the
policy level, an extension to the application scenario
presented in sections 4.3 and 4.4 is described. Consider
a problem that can occur: if the selection logic flips
between signals and back again in a short time frame
the managing system is itself producing oscillatory
behaviour which is highly undesirable from stability
and efficiency viewpoints.

Self-stabilisation behaviour is now added to prevent
switching between signals too frequently, There are
two key requirements to make this work: firstly, a
means by which the policy logic can detect that it is
producing unstable behaviour; and secondly, a means
by which the policy logic can re-configure itself to
restore stability,

The first requirement is satisfied by using a property
DecisionChangeInterval which is implemented on
decision-making objects (Rule, TRC, UF, TA). This is
a policy-accessible exponentially-smoothed measure of
the number of similar decision outputs between
instances where the decision is changed. Thus a policy
can monitor its own performance and the overall
stability of the controlled environment. A low value
indicates that the policy is over-reactive and needs to
de-tune itself, or in extreme cases that the policy
configuration is not well-suited to the environmental
conditions; this can be used to drive a self-adaptation
change of the policy logic.

The second requirement can be satisfied in several
ways. The example below demonstrates the use of the
special “PolicyObject’ type of variable, which provides
indirect addressing. Indirect addressing is used to
dynamically change the relationships between

components; in this case to maintain stability when the
policy detects that it itself is flipping between two
decision states.

Taking the previous policy as a starting point, there
are several implementation changes: 1. The outputs of
the UF are indirectly mapped onto return values (which
form the output of the policy itself) using variables of a
special type. 2. An alternative decision maker is
provided to operate in exireme conditions when the
current UF is unstable (to keep the demonstration
simple this ‘alternative’ is in fact an action-block that
provides constant values, but could easily be another
active component such as Rule, UF, TRC etc.). 3. A
new stability-enforcing rule is added to detect unstable
behaviour. The rule manipulates the indirect addressing
to reconfigure the policy logic. This has the effect of
automatically switching between the UF and the
alternative decision maker, see figure 8. The rule
continues to monitor the UF’s decision behaviour.
Once this has stabilised, the rule reverts the policy
logic back to its original configuration.

Alternate
decision-
maker

N
! \
! Dynamic policy configuration
facilitated by indirect
p o 1 addressing at the policy
¥ 1 logiclevel, and controlled
by the stability ruls,

Figure 8. Self-adaptation of policy logic

The additions to policy script are shown below (key
aspects are shown bold):

<InterpalVariables>
<IVariable Name="Ul_ACT1" Type="PolicyCbject"/>
<Ivariable Name="ULl_ACT2" Type="PolicyCbject"/>
</InternalVariables>
<Action Name="Al">

<EvaluateRule Rule="RuleS5l1"/>
<EvaluateRule Rule="RuleS2"/>
<EvaluateRule Rule="StabilityRule"/>
<EvaluatelF UF="UF1"/>
</Action>
<Action Name="A_Stable">
<Assign LHS="Ul_ACT1™ RHS="R_Signall"/>
<Assign LHS="Ul_ACT2™ RHS="R_Signal2"/>
</Action>
<Action Name="A_UnStable">
<Assign LH§="Ul_ACT1™ RHS="R_Signali"/>
<Assign LHS="U1_ACT2" RHS="R_Signall"/>
</Action>
<Rule Name="StabilityRule"
LHS="UFl:DecisionChangeIntexval” Op="GE" RH§="5"
ActionIfTrue="A_Stable" ElseRhction="A UnStable"/>
<UF Name="UFL" Terms="2">
<Option Action="Ul_ACT1l" T1="Sl:Spikelnterval”
Wl="Wl" T2="Sl:NoiseLavel" W2="Wz"/>
<0pticn Actien="Ul_ACT2"™ T1="S2:S5pikelnterval"
W1="W1l™® T2="52:MNoiseLevel" W2="Wz"/>
</UF>
<Policy Name="Policyl" PolicyType="NormalPolicy">
<Load Template="T1"/>



<Execute Action="Al"/>
</Policy>

To evaluate the effectiveness of the self-adaptation,
the original and dynamic policies were compared under
extreme conditions. Very high noise levels were
injected into each input signal, such that the original
policy tended to flip erratically in its selection of the
best signal. The results are shown in figures 10 and 11,
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Figure 9, Instability when signals have high levels of noise
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Figure 10. Stabilised behaviour through dynamic policy
adaptation

The difference in the signals’ quality is marginal at
any moment and thus it is undesirable to flip between
them. As can be scen from the ‘selected signal’ trace
(low indicating signall selected, high indicating
signal2), the dynamic policy exhibits significantly
more-stable behaviour. The original policy flipped 38
times over a run of 310 samples (figure 9), whereas the
dynamic policy achieved only 28 flips with a
DecisionChangeInterval threshold value of 3, and
only 15 times with a threshold of 5 (figure10),

The adaptation in this example is based on
dynamically swapping the UF decision maker for an
alternative component, better suited to context.
However, if the context was radically ditferent it might
be more appropriate to change the entire policy, and
not just the component interaction within, This would
be achieved by replacing the content of the
A_UnStable Action block with a ‘yield’ action, such
as:

<Yield Policy="AlternativePolicy™/>

This section has rounded off the discussion of the
integration framework by presenting an example

application in which a policy menitors and adjusts its
own configuration dynamically to suit its execution
context. This is achieved in addition to managing the
controlled system. The input sensors were simulated
but the real policy library and policy were used.

All of the policy resources discussed in this paper
(including the AGILE library, policy expression
language semantics documentation, API
documentation, sample applications and policy scripts)
are available for download at the AGILE support
website [26].

6. Conclusion

The longer-term advancement of autonomic
computing and its acceptance by the wider software
development community depends on the provision of
powerful and versatile tools that facilitate the creation
of flexible management systems.

This paper has presented AGILE, which comprises a
policy expression language and a framework to support
the integration of several techniques popular in the
development of autonomic systems.

The work goes some way towards providing a
generic toelkit for autonomic computing; this is the
overall goal.

The approach taken uses policies not only to express
business logic, but also to provide composition
structure  so that several different autonomics
techniques can interoperate. This represents a flexible
way to implement a very wide variety of autonomic
systems and AGILE has a powerful application
programmer interface (API) to support and simplify
implementation and deployment,

Mostly the various mechanisms embedded in the
implementation  library  operate  silently and
automatically deal with run-time validation and certain
internal self adaptations. This enables policies to
provide powerful expression of behaviour whilst being
quite short and simple to understand semantically.

The policy language has several novel features
which contribute to pushing forward the state of the art
in policy based computing; these were discussed in
section 3.

The framework itself provides two further
contributions: First, the novel use of the policy
language as a means of integrating the various other
technologies in a modular fashion, Second, the fact that
the policy language supports dynamic reconfiguration
of the policies themselves means that the actual
composition of, and interaction between, the various
components can be adapted at run-time to increase
contextual scope.

Human involvement with autonomic systems will
gradually and inevitably move to higher levels of



abstraction. Low-level interactions will be replaced by
control systems that monitor their own effectiveness
and adapt themselves, as well as the components they
manage. AGILE aspires towards this, with its self-
adaptive sighal-processing logic and the various
mechanisms it supports for dynamic adaptation of
policies, and dynamic composition of the various
components.

7. Further work

Policy visualization support is needed to lever
AGILE into the mainstream practitioner domain. The
intention is to develop tools that allow a policy to be
developed through drag-and-drop of the wvarious
component-types and connectors,
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